Cancer remains one of the leading cause of death worldwide. Current therapies are still ineffective in completely eradicating the disease. In the last two decades, the use of nanodelivery systems has emerged as an effective way to potentiate the therapeutic properties of anti-cancer drugs by improving their solubility and stability, prolong drug half-lives in plasma, minimize drug's toxicity by reducing its off-target distribution, and promote drugs' accumulation at the desired target site. Liposomes and polymer nanoparticles are the most studied and have demonstrated to be the most effective delivery systems for anti-cancer drugs. However, both liposomes and polymeric nanoparticles suffer from limitations, including high instability, rapid drug release, limited drug loading capacity, low biocompatibility and lack of suitability for large-scale production. To overcome these limitations, lipid-polymer hybrid nanoparticles (LPHNPs) have been developed to merge the advantages of both lipid- and polymer-based nanocarriers, such as high biocompatibility and stability, improved drug loading and controlled release, as well as increased drug half-lives and therapeutic efficacy. This review provides an overview on the synthesis, properties and application of LPHNPs for cancer therapy.

Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions

Giuseppe Gigli;Stefano Leporatti
2021

Abstract

Cancer remains one of the leading cause of death worldwide. Current therapies are still ineffective in completely eradicating the disease. In the last two decades, the use of nanodelivery systems has emerged as an effective way to potentiate the therapeutic properties of anti-cancer drugs by improving their solubility and stability, prolong drug half-lives in plasma, minimize drug's toxicity by reducing its off-target distribution, and promote drugs' accumulation at the desired target site. Liposomes and polymer nanoparticles are the most studied and have demonstrated to be the most effective delivery systems for anti-cancer drugs. However, both liposomes and polymeric nanoparticles suffer from limitations, including high instability, rapid drug release, limited drug loading capacity, low biocompatibility and lack of suitability for large-scale production. To overcome these limitations, lipid-polymer hybrid nanoparticles (LPHNPs) have been developed to merge the advantages of both lipid- and polymer-based nanocarriers, such as high biocompatibility and stability, improved drug loading and controlled release, as well as increased drug half-lives and therapeutic efficacy. This review provides an overview on the synthesis, properties and application of LPHNPs for cancer therapy.
2021
Istituto di Nanotecnologia - NANOTEC
Hybrid nanosystem
Lipid-polymer hybrid nanoparticle
Lipid Shell
Polymeric Core
Nanomedicine
Cancer
Drug Delivery
Core-shell structure
Anti-Cancer Therapy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact