We determine the dimensional dependence of the percolative exponents of the jamming transition via numerical simulations in four and five spatial dimensions. These novel results complement literature ones, and establish jamming as a mixed first-order percolation transition, with critical exponents ?=0, ?=2, ?=0 and the finite size scaling exponent ?*=2/d for values of the spatial dimension d>=2. We argue that the upper critical dimension is du=2 and the connectedness length exponent is ?=1. © 2021 Elsevier B.V.
Jamming as a random first-order percolation transition
Antonio PiscitelliPrimo
;Antonio Coniglio;Annalisa Fierro
;Massimo Pica CiamarraUltimo
2021
Abstract
We determine the dimensional dependence of the percolative exponents of the jamming transition via numerical simulations in four and five spatial dimensions. These novel results complement literature ones, and establish jamming as a mixed first-order percolation transition, with critical exponents ?=0, ?=2, ?=0 and the finite size scaling exponent ?*=2/d for values of the spatial dimension d>=2. We argue that the upper critical dimension is du=2 and the connectedness length exponent is ?=1. © 2021 Elsevier B.V.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0378437121000686-main.pdf
solo utenti autorizzati
Descrizione: full text
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
429.91 kB
Formato
Adobe PDF
|
429.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.