We determine the dimensional dependence of the percolative exponents of the jamming transition via numerical simulations in four and five spatial dimensions. These novel results complement literature ones, and establish jamming as a mixed first-order percolation transition, with critical exponents ?=0, ?=2, ?=0 and the finite size scaling exponent ?*=2/d for values of the spatial dimension d>=2. We argue that the upper critical dimension is du=2 and the connectedness length exponent is ?=1. © 2021 Elsevier B.V.

Jamming as a random first-order percolation transition

Antonio Piscitelli
Primo
;
Antonio Coniglio;Annalisa Fierro
;
Massimo Pica Ciamarra
Ultimo
2021

Abstract

We determine the dimensional dependence of the percolative exponents of the jamming transition via numerical simulations in four and five spatial dimensions. These novel results complement literature ones, and establish jamming as a mixed first-order percolation transition, with critical exponents ?=0, ?=2, ?=0 and the finite size scaling exponent ?*=2/d for values of the spatial dimension d>=2. We argue that the upper critical dimension is du=2 and the connectedness length exponent is ?=1. © 2021 Elsevier B.V.
2021
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Jamming
Percolation Transition
First Order Transition
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378437121000686-main.pdf

solo utenti autorizzati

Descrizione: full text
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 429.91 kB
Formato Adobe PDF
429.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact