Luminescent quantum dots (QDs) are colloidal semiconductor nanocrystals consisting of an inorganic core covered by a molecular layer of organic surfactants. Although QDs have been known for more than thirty years, they are still attracting the interest of researchers because of their unique size-tunable optical and electrical properties arising from quantum confinement. Moreover, the controlled decoration of the QD surface with suitable molecular species enables the rational design of inorganic-organic multicomponent architectures that can show a vast array of functionalities. This minireview highlights the recent progress in the use of surface-modified QDs - in particular, those based on cadmium chalcogenides - as supramolecular platforms for light-related applications such as optical sensing, triplet photosensitization, photocatalysis and phototherapy.

Semiconductor Quantum Dots as Components of Photoactive Supramolecular Architectures

Credi Alberto
2020

Abstract

Luminescent quantum dots (QDs) are colloidal semiconductor nanocrystals consisting of an inorganic core covered by a molecular layer of organic surfactants. Although QDs have been known for more than thirty years, they are still attracting the interest of researchers because of their unique size-tunable optical and electrical properties arising from quantum confinement. Moreover, the controlled decoration of the QD surface with suitable molecular species enables the rational design of inorganic-organic multicomponent architectures that can show a vast array of functionalities. This minireview highlights the recent progress in the use of surface-modified QDs - in particular, those based on cadmium chalcogenides - as supramolecular platforms for light-related applications such as optical sensing, triplet photosensitization, photocatalysis and phototherapy.
2020
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
quantum dots
triplet sensitization
sensing
catalysis
supramolecular chemistry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/428926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 13
social impact