A three-day mesoscale numerical simulation has been performed over the narrow Salento peninsula (south-eastern Italy) during summer conditions characterised by weak synoptic forcing. These atmospheric conditions favour the development of complex sea-breeze systems and convergence zones on the peninsula. The aim of this work is to investigate the ability of an atmospheric mesoscale model to reproduce the surface fields of meteorological variables in the presence of local-scale forcing and breeze circulations, which are fundamental in applications such as air pollution modelling and nowcasting. The modelled fields have been compared with available surface measurements and sodar data. Results indicate that the model can simulate the general mean wind field in a realistic way. The diurnal evolution of the wind is well reproduced and the maximum deviations mostly occur during the night, being associated with calm conditions. Statistical analysis indicates that the typical mean bias is found to be about 1 m s(-1) for hourly averaged wind speed, less than 20degrees for wind direction and about 1 degreesC for temperature. The root mean square error (rmse) varies from 1 to 3 m s(-1) for wind speed, from 50degrees to 70degrees for wind direction, and is about 2.4 degreesC for temperature. All the values of the numerical indexes are within ranges which are characteristic of those found for other state-of-the-art models applied to similar cases studies. Despite a good overall agreement between predictions and observations, some discrepancies were found in the individual profiles due both to the limited spatial representation of the local details and to the complex wind field which makes the space-time matching between the model and the observations quite critical. The structures of the thermal mixed layer and the breeze convergence zone are similar to numerical studies relative to more idealised conditions.

Modelling local winds over Salento Peninsula

Mangia C;P Martano;M M Miglietta;
2004

Abstract

A three-day mesoscale numerical simulation has been performed over the narrow Salento peninsula (south-eastern Italy) during summer conditions characterised by weak synoptic forcing. These atmospheric conditions favour the development of complex sea-breeze systems and convergence zones on the peninsula. The aim of this work is to investigate the ability of an atmospheric mesoscale model to reproduce the surface fields of meteorological variables in the presence of local-scale forcing and breeze circulations, which are fundamental in applications such as air pollution modelling and nowcasting. The modelled fields have been compared with available surface measurements and sodar data. Results indicate that the model can simulate the general mean wind field in a realistic way. The diurnal evolution of the wind is well reproduced and the maximum deviations mostly occur during the night, being associated with calm conditions. Statistical analysis indicates that the typical mean bias is found to be about 1 m s(-1) for hourly averaged wind speed, less than 20degrees for wind direction and about 1 degreesC for temperature. The root mean square error (rmse) varies from 1 to 3 m s(-1) for wind speed, from 50degrees to 70degrees for wind direction, and is about 2.4 degreesC for temperature. All the values of the numerical indexes are within ranges which are characteristic of those found for other state-of-the-art models applied to similar cases studies. Despite a good overall agreement between predictions and observations, some discrepancies were found in the individual profiles due both to the limited spatial representation of the local details and to the complex wind field which makes the space-time matching between the model and the observations quite critical. The structures of the thermal mixed layer and the breeze convergence zone are similar to numerical studies relative to more idealised conditions.
2004
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/429240
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact