The present work is devoted to modeling and simulation of the carbonation process in concrete. To this aim we introduce some free boundary problems which describe the evolution of calcium carbonate stones under the attack of $ {CO}_2 $ dispersed in the atmosphere, taking into account both the shrinkage of concrete and the influence of humidity on the carbonation process. Indeed, two different regimes are described according to the relative humidity in the environment. Finally, some numerical simulations here presented are in substantial accordance with experimental results taken from literature.

A moving boundary problem for reaction and diffusion processes in concrete: Carbonation advancement and carbonation shrinkage

Gabriella Bretti;Maurizio Ceseri;Roberto Natalini
2022

Abstract

The present work is devoted to modeling and simulation of the carbonation process in concrete. To this aim we introduce some free boundary problems which describe the evolution of calcium carbonate stones under the attack of $ {CO}_2 $ dispersed in the atmosphere, taking into account both the shrinkage of concrete and the influence of humidity on the carbonation process. Indeed, two different regimes are described according to the relative humidity in the environment. Finally, some numerical simulations here presented are in substantial accordance with experimental results taken from literature.
2022
Istituto Applicazioni del Calcolo ''Mauro Picone''
Concrete carbonation
reaction and diffusion
parabolic PDE
model calibration
finite difference schemes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/429411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact