The demand for transparent conductive films (TCFs) is dramatically increasing. In this work tungsten oxide (WO3-x) is studied as a possible option additional to the existed TCFs. We introduce WO3-x thin films fabricated by a non-reactive magnetron RF-sputtering process at room temperature, followed by thermal annealing in dry air. Films are characterized morphologically, structurally, electrically, optically, and dielectrically. Amorphous WO3-x thin films are shown to be n-type conductive while the transparency extends to the near-IR. By evaluating a figure of merit for transparent-conductive performance and comparing to some most-widely used TCFs, WO3-x turns out to outperform in the near-IR optical range
Amorphous WO3 as transparent conductive oxide in the near-IR
Alice Carlotto;Alessandro Chiasera;
2022
Abstract
The demand for transparent conductive films (TCFs) is dramatically increasing. In this work tungsten oxide (WO3-x) is studied as a possible option additional to the existed TCFs. We introduce WO3-x thin films fabricated by a non-reactive magnetron RF-sputtering process at room temperature, followed by thermal annealing in dry air. Films are characterized morphologically, structurally, electrically, optically, and dielectrically. Amorphous WO3-x thin films are shown to be n-type conductive while the transparency extends to the near-IR. By evaluating a figure of merit for transparent-conductive performance and comparing to some most-widely used TCFs, WO3-x turns out to outperform in the near-IR optical rangeI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.