Different concentrations (0.1, 0.2, 0.5, and 1 wt%) of OH-functionalized carbon nanotubes (CNTs) were used to prepare high-density polyethylene (HDPE) based composites via melt blending in the presence of a maleinized polyethylene (PE-g-MA) as a coupling agent. The mechanical behaviour of the produced HDPE/CNT composites was investigated in view of their possible application as reinforced materials in the civil structures and understood in terms of the structural modifications produced by the incorporation of CNTs in the HDPE matrix. The dispersion of CNTs in the polymer matrix, a key parameter to the ends of the mechanical performance of the composites, was evaluated at different observation scales, from few micrometers to some millimeters, by means of transmission electron microscopy (TEM), micro-Raman spectroscopy (MRS) and acoustic image analysis. The comparative discussion of the results obtained allowed clarifying the reason for the lack of a net improvement in the mechanical behaviour of the composites with respect to the pristine polymer.

High-density polyethylene/carbon nanotubes composites: Investigation on the factors responsible for the fracture formation under tensile loading

Conzatti L;Utzeri R;Stagnaro P;
2021

Abstract

Different concentrations (0.1, 0.2, 0.5, and 1 wt%) of OH-functionalized carbon nanotubes (CNTs) were used to prepare high-density polyethylene (HDPE) based composites via melt blending in the presence of a maleinized polyethylene (PE-g-MA) as a coupling agent. The mechanical behaviour of the produced HDPE/CNT composites was investigated in view of their possible application as reinforced materials in the civil structures and understood in terms of the structural modifications produced by the incorporation of CNTs in the HDPE matrix. The dispersion of CNTs in the polymer matrix, a key parameter to the ends of the mechanical performance of the composites, was evaluated at different observation scales, from few micrometers to some millimeters, by means of transmission electron microscopy (TEM), micro-Raman spectroscopy (MRS) and acoustic image analysis. The comparative discussion of the results obtained allowed clarifying the reason for the lack of a net improvement in the mechanical behaviour of the composites with respect to the pristine polymer.
2021
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
Composites
HDPE/CNTs
Mechanical testing
Structural investigations
File in questo prodotto:
File Dimensione Formato  
prod_458925-doc_178528.pdf

solo utenti autorizzati

Descrizione: articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/429495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact