A full-length cDNA encoding a metallothionein (MT)-like polypeptide, designated GmarMT1, was identified in an expresse sequence tag collection from germinated spores of the arbuscular mycorrhizal fungus Gigaspora margarita (BEG34). The GmarMT1 gene is composed of two exons separated by an 81-bp intron. It codes for a 65-amino acid polypeptide comprising a plant type 1 MT-like N-terminal domain and a C-terminal domain that is most closely related to an as-yet-uncharacterized fungal MT. As revealed by heterologous complementation assays in yeast, GmarMT1 encodes a functional polypeptide capable of conferring increased tolerance against Cd and Cu. The GmarMT1 RNA is expressed in both presymbiotic spores and symbiotic mycelia, even in the absence of metal exposure, but is significantly less abundant in the latter stage. An opposite pattern was observed upon Cu exposure, which up-regulated GmarMT1 expression in symbiotic mycelia but not in germinated spores. Together, these data provide the first evidence, to our knowledge, for the occurrence in an arbuscular mycorrhizal fungus of a structurally novel MT that is modulated in a metal and life cycle stage-dependent manner and may afford protection against heavy metals (and other types of stress) to both partners of the endomycorrhizal symbiosis.

Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus

2002

Abstract

A full-length cDNA encoding a metallothionein (MT)-like polypeptide, designated GmarMT1, was identified in an expresse sequence tag collection from germinated spores of the arbuscular mycorrhizal fungus Gigaspora margarita (BEG34). The GmarMT1 gene is composed of two exons separated by an 81-bp intron. It codes for a 65-amino acid polypeptide comprising a plant type 1 MT-like N-terminal domain and a C-terminal domain that is most closely related to an as-yet-uncharacterized fungal MT. As revealed by heterologous complementation assays in yeast, GmarMT1 encodes a functional polypeptide capable of conferring increased tolerance against Cd and Cu. The GmarMT1 RNA is expressed in both presymbiotic spores and symbiotic mycelia, even in the absence of metal exposure, but is significantly less abundant in the latter stage. An opposite pattern was observed upon Cu exposure, which up-regulated GmarMT1 expression in symbiotic mycelia but not in germinated spores. Together, these data provide the first evidence, to our knowledge, for the occurrence in an arbuscular mycorrhizal fungus of a structurally novel MT that is modulated in a metal and life cycle stage-dependent manner and may afford protection against heavy metals (and other types of stress) to both partners of the endomycorrhizal symbiosis.
2002
PROTEZIONE DELLE PIANTE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/42964
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact