The state-to-state chemical kinetic model, which considers a kinetic equation for each vibrational state of diatomic molecules, has been applied to some supersonic flow regimes and in particular in boundary layer, nozzle expansion, and shock wave. Nonequilibrium vibrational distribution obtained in the calculations shows strong departure from equilibrium-inducing non-Arrhenius global chemical rates, which differ substantially from macroscopic rates commonly used in fluid-dynamic codes. The evolution properties of the distribution have been investigated by. a zero-dimensional numerical code in controlled conditions. We are trying to obtain from zero-dimensional results the approach to find appropriate macroscopic rate models to be used in fluid-dynamic codes accounting for the vibrational nonequilibrium. A comparison of analytical fitting of, the zero-dimensional data and fluid dynamic global, rates has been performed.
Reduction of State to State Kinetics to Macroscopic Models in Hypersonic Flows
G Colonna;I Armenise;D Bruno;M Capitelli
2006
Abstract
The state-to-state chemical kinetic model, which considers a kinetic equation for each vibrational state of diatomic molecules, has been applied to some supersonic flow regimes and in particular in boundary layer, nozzle expansion, and shock wave. Nonequilibrium vibrational distribution obtained in the calculations shows strong departure from equilibrium-inducing non-Arrhenius global chemical rates, which differ substantially from macroscopic rates commonly used in fluid-dynamic codes. The evolution properties of the distribution have been investigated by. a zero-dimensional numerical code in controlled conditions. We are trying to obtain from zero-dimensional results the approach to find appropriate macroscopic rate models to be used in fluid-dynamic codes accounting for the vibrational nonequilibrium. A comparison of analytical fitting of, the zero-dimensional data and fluid dynamic global, rates has been performed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.