A recently introduced approach to the classical gravitational dynamics of binary systems involves intricate integrals (linked to a combination of nonlocal-in-time interactions with iterated 1r-potential scattering) which have so far resisted attempts at their analytical evaluation. By using computing techniques developed for the evaluation of multiloop Feynman integrals (notably harmonic polylogarithms and Mellin transform) we show how to analytically compute all the integrals entering the nonlocal-in-time contribution to the classical scattering angle at the sixth post-Newtonian accuracy, and at the seventh order in Newton's constant, G (corresponding to six-loop graphs in the diagrammatic representation of the classical scattering angle).

Gravitational scattering at the seventh order in G: Nonlocal contribution at the sixth post-Newtonian accuracy

Bini D
Membro del Collaboration Group
;
Geralico A
Membro del Collaboration Group
;
2021

Abstract

A recently introduced approach to the classical gravitational dynamics of binary systems involves intricate integrals (linked to a combination of nonlocal-in-time interactions with iterated 1r-potential scattering) which have so far resisted attempts at their analytical evaluation. By using computing techniques developed for the evaluation of multiloop Feynman integrals (notably harmonic polylogarithms and Mellin transform) we show how to analytically compute all the integrals entering the nonlocal-in-time contribution to the classical scattering angle at the sixth post-Newtonian accuracy, and at the seventh order in Newton's constant, G (corresponding to six-loop graphs in the diagrammatic representation of the classical scattering angle).
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
Gravitational scattering
File in questo prodotto:
File Dimensione Formato  
2012.12918v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 412.29 kB
Formato Adobe PDF
412.29 kB Adobe PDF Visualizza/Apri
PhysRevD.103.044038.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 456.64 kB
Formato Adobe PDF
456.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/429851
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact