The need for more and more accurate gravitational-wave templates requires taking into account all possible contributions to the emission of gravitational radiation from a binary system. Therefore, working within a multipolar-post-Minkowskian framework to describe the gravitational-wave field in terms of the source multipole moments, the dominant instantaneous effects should be supplemented by hereditary contributions arising from nonlinear interactions between the multipoles. The latter effects include tails and memories and are described in terms of integrals depending on the past history of the source. We compute higher-order tail (i.e., tail-of-tail, tail-squared, and memory) contributions to both energy and angular momentum fluxes and their averaged values along hyperboliclike orbits at the leading post-Newtonian approximation, using harmonic coordinates and working in the Fourier domain. Because of the increasing level of accuracy recently achieved in the determination of the scattering angle in a two-body system by several complementary approaches, the knowledge of these terms will provide useful information to compare results from different formalisms.

Higher-order tail contributions to the energy and angular momentum fluxes in a two-body scattering process

Bini D;Geralico A
2021

Abstract

The need for more and more accurate gravitational-wave templates requires taking into account all possible contributions to the emission of gravitational radiation from a binary system. Therefore, working within a multipolar-post-Minkowskian framework to describe the gravitational-wave field in terms of the source multipole moments, the dominant instantaneous effects should be supplemented by hereditary contributions arising from nonlinear interactions between the multipoles. The latter effects include tails and memories and are described in terms of integrals depending on the past history of the source. We compute higher-order tail (i.e., tail-of-tail, tail-squared, and memory) contributions to both energy and angular momentum fluxes and their averaged values along hyperboliclike orbits at the leading post-Newtonian approximation, using harmonic coordinates and working in the Fourier domain. Because of the increasing level of accuracy recently achieved in the determination of the scattering angle in a two-body system by several complementary approaches, the knowledge of these terms will provide useful information to compare results from different formalisms.
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
Gravitational radiation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/429854
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact