Modern IoT ecosystems are the preferred target of threat actors wanting to incorporate resource-constrained devices within a botnet or leak sensitive information. A major research effort is then devoted to create countermeasures for mitigating attacks, for instance, hardware-level verification mechanisms or effective network intrusion detection frameworks. Unfortunately, advanced malware is often endowed with the ability of cloaking communications within network traffic, e.g., to orchestrate compromised IoT nodes or exfiltrate data without being noticed. Therefore, this paper showcases how different autoencoder-based architectures can spot the presence of malicious communications hidden in conversations, especially in the TTL of IPv4 traffic. To conduct tests, this work considers IoT traffic traces gathered in a real setting and the presence of an attacker deploying two hiding schemes (i.e., naive and "elusive" approaches). Collected results showcase the effectiveness of our method as well as the feasibility of deploying autoencoders in production-quality IoT settings.

Learning autoencoder ensembles for detecting malware hidden communications in IoT ecosystems

Nunziato Cassavia;Luca Caviglione;Massimo Guarascio;Angelica Liguori;Marco Zuppelli
2023

Abstract

Modern IoT ecosystems are the preferred target of threat actors wanting to incorporate resource-constrained devices within a botnet or leak sensitive information. A major research effort is then devoted to create countermeasures for mitigating attacks, for instance, hardware-level verification mechanisms or effective network intrusion detection frameworks. Unfortunately, advanced malware is often endowed with the ability of cloaking communications within network traffic, e.g., to orchestrate compromised IoT nodes or exfiltrate data without being noticed. Therefore, this paper showcases how different autoencoder-based architectures can spot the presence of malicious communications hidden in conversations, especially in the TTL of IPv4 traffic. To conduct tests, this work considers IoT traffic traces gathered in a real setting and the presence of an attacker deploying two hiding schemes (i.e., naive and "elusive" approaches). Collected results showcase the effectiveness of our method as well as the feasibility of deploying autoencoders in production-quality IoT settings.
2023
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Deep autoencoder
Ensemble Method
Covert Channel
Intelligent cyber attack detection system
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/429977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact