Modern IoT ecosystems are the preferred target of threat actors wanting to incorporate resource-constrained devices within a botnet or leak sensitive information. A major research effort is then devoted to create countermeasures for mitigating attacks, for instance, hardware-level verification mechanisms or effective network intrusion detection frameworks. Unfortunately, advanced malware is often endowed with the ability of cloaking communications within network traffic, e.g., to orchestrate compromised IoT nodes or exfiltrate data without being noticed. Therefore, this paper showcases how different autoencoder-based architectures can spot the presence of malicious communications hidden in conversations, especially in the TTL of IPv4 traffic. To conduct tests, this work considers IoT traffic traces gathered in a real setting and the presence of an attacker deploying two hiding schemes (i.e., naive and "elusive" approaches). Collected results showcase the effectiveness of our method as well as the feasibility of deploying autoencoders in production-quality IoT settings.
Learning autoencoder ensembles for detecting malware hidden communications in IoT ecosystems
Nunziato Cassavia;Luca Caviglione;Massimo Guarascio;Angelica Liguori;Marco Zuppelli
2023
Abstract
Modern IoT ecosystems are the preferred target of threat actors wanting to incorporate resource-constrained devices within a botnet or leak sensitive information. A major research effort is then devoted to create countermeasures for mitigating attacks, for instance, hardware-level verification mechanisms or effective network intrusion detection frameworks. Unfortunately, advanced malware is often endowed with the ability of cloaking communications within network traffic, e.g., to orchestrate compromised IoT nodes or exfiltrate data without being noticed. Therefore, this paper showcases how different autoencoder-based architectures can spot the presence of malicious communications hidden in conversations, especially in the TTL of IPv4 traffic. To conduct tests, this work considers IoT traffic traces gathered in a real setting and the presence of an attacker deploying two hiding schemes (i.e., naive and "elusive" approaches). Collected results showcase the effectiveness of our method as well as the feasibility of deploying autoencoders in production-quality IoT settings.File | Dimensione | Formato | |
---|---|---|---|
prod_488406-doc_203169.pdf
solo utenti autorizzati
Descrizione: Learning autoencoder ensembles for detecting malware hidden communications in IoT ecosystems
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.35 MB
Formato
Adobe PDF
|
1.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.