A quantitative study on inelastic electron scattering with a molecule is of significant importance for understanding the essential mechanisms of electron-induced gas-phase and surface chemical reactions in their excited electronic states. A key issue to be addressed is the quantitatively detailed inelastic electron collision processes with a realistic molecular target, associated with electron excitation that leads to potential ionization and dissociation reactions of the molecule. Using the real-time time-dependent density functional theory (TDDFT) modeling, we present quantitative findings on the energy transfers and internal excitations for the low energy (up to 270 eV) electron wave packet impact with the molecular target cobalt tricarbonyl nitrosyl (CTN, Co(CO)3NO) that is used as a precursor in electron-enhanced atomic layer deposition (EE-ALD) growth of Co films. Our modeling shows the quantitative dependence of the wave packet sizes, target molecule orientations, and impact parameters on the energy transfer in this inelastic electron scattering process. It is found that the wave packet sizes have little effect on the overall profile of the internal multiple excited states, whereas different target orientations can cause significantly different internal excited states. To evaluate the quantitative prediction capability, the inelastic scattering cross-section of a hydrogen atom is calculated and compared with the experimental data, leading to a constant scaling factor over the whole energy range. The present study demonstrates the remarkable potential of TDDFT for simulating the inelastic electron scattering process, which provides critical information for future exploration of electronic excitations in a wide range of electron-induced chemical reactions in current technological applications.
First-Principles Study on Electron-Induced Excitations of Atomic Layer Deposition Precursors: Inelastic Electron Wave Packet Scattering with...
Ceresoli Davide;
2021
Abstract
A quantitative study on inelastic electron scattering with a molecule is of significant importance for understanding the essential mechanisms of electron-induced gas-phase and surface chemical reactions in their excited electronic states. A key issue to be addressed is the quantitatively detailed inelastic electron collision processes with a realistic molecular target, associated with electron excitation that leads to potential ionization and dissociation reactions of the molecule. Using the real-time time-dependent density functional theory (TDDFT) modeling, we present quantitative findings on the energy transfers and internal excitations for the low energy (up to 270 eV) electron wave packet impact with the molecular target cobalt tricarbonyl nitrosyl (CTN, Co(CO)3NO) that is used as a precursor in electron-enhanced atomic layer deposition (EE-ALD) growth of Co films. Our modeling shows the quantitative dependence of the wave packet sizes, target molecule orientations, and impact parameters on the energy transfer in this inelastic electron scattering process. It is found that the wave packet sizes have little effect on the overall profile of the internal multiple excited states, whereas different target orientations can cause significantly different internal excited states. To evaluate the quantitative prediction capability, the inelastic scattering cross-section of a hydrogen atom is calculated and compared with the experimental data, leading to a constant scaling factor over the whole energy range. The present study demonstrates the remarkable potential of TDDFT for simulating the inelastic electron scattering process, which provides critical information for future exploration of electronic excitations in a wide range of electron-induced chemical reactions in current technological applications.File | Dimensione | Formato | |
---|---|---|---|
prod_459004-doc_178578.pdf
solo utenti autorizzati
Descrizione: First-Principles Study on Electron-Induced Excitations of Atomic Layer Deposition Precursors: Inelastic Electron Wave Packet Scattering with ...
Tipologia:
Versione Editoriale (PDF)
Dimensione
2.37 MB
Formato
Adobe PDF
|
2.37 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.