Genetic variability is one of the major survival strategies developed by symbiotic fungi. We focused on the ectomycorrhizal fungus Tuber uncinatum Chatin that produces edible ascomata. In order to understand the degree of its variability and its relatedness to another morphologically-similar truffle, T. aestivum Vittad., ascomata of T. uncinatum were collected from a single natural truffle-ground located in the North of Italy and compared with samples from other Italian sites, as well as with T. aestivum ascomata from other European regions. We used multilocus approaches, such as microsatellite-primed PCR, and single locus markers, such as mitochondrial and nuclear ribosomal DNA on thirty samples. The results demonstrate that the level of genetic polymorphism among isolates of T. uncinatum was higher than in other Tuber species, like T. melanosporum. Neighbour-joining analyses were carried out on a binary data matrix on twelve ascomata of T. uncinatum and T. aestivum, and on fifteen ITS sequences of these species and five from other Tuber species. Taken together, they clustered T. uncinatum and T. aestivum in two separate groups. The mitochondrial rDNA primers, NMS1 and NMS2, were not able to differentiate morphologically-related and -unrelated truffles. Moreover, a pair of primers, intentionally designed to differentiate isolates of T. aestivum and T. uncinatum from other Tuber species, successfully amplified DNA from all the samples of T. aestivum and T. uncinatum considered in our analysis. In conclusion, different molecular approaches separate T. aestivum and T. uncinatum according to their spore reticulum and their taste and smell.

Genetic variability of Tuber uncinatum and its relatedness to other black truffles

Mello A;
2002

Abstract

Genetic variability is one of the major survival strategies developed by symbiotic fungi. We focused on the ectomycorrhizal fungus Tuber uncinatum Chatin that produces edible ascomata. In order to understand the degree of its variability and its relatedness to another morphologically-similar truffle, T. aestivum Vittad., ascomata of T. uncinatum were collected from a single natural truffle-ground located in the North of Italy and compared with samples from other Italian sites, as well as with T. aestivum ascomata from other European regions. We used multilocus approaches, such as microsatellite-primed PCR, and single locus markers, such as mitochondrial and nuclear ribosomal DNA on thirty samples. The results demonstrate that the level of genetic polymorphism among isolates of T. uncinatum was higher than in other Tuber species, like T. melanosporum. Neighbour-joining analyses were carried out on a binary data matrix on twelve ascomata of T. uncinatum and T. aestivum, and on fifteen ITS sequences of these species and five from other Tuber species. Taken together, they clustered T. uncinatum and T. aestivum in two separate groups. The mitochondrial rDNA primers, NMS1 and NMS2, were not able to differentiate morphologically-related and -unrelated truffles. Moreover, a pair of primers, intentionally designed to differentiate isolates of T. aestivum and T. uncinatum from other Tuber species, successfully amplified DNA from all the samples of T. aestivum and T. uncinatum considered in our analysis. In conclusion, different molecular approaches separate T. aestivum and T. uncinatum according to their spore reticulum and their taste and smell.
2002
PROTEZIONE DELLE PIANTE
Tuber uncinatum
variability
ITS
microsatellites
mitochondrial DNA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/43018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact