In this paper, we present the results of a theoretical investigation on the dynamics of the title reaction at collision energies below 1.2 kcal/mol using rigorous quantum reactive scattering calculations. Vibrationally resolved integral and differential cross sections, as well as product rotational distributions, have been calculated using two electronically adiabatic potential energy surfaces, developed by us on the basis of semiempirical modifications of the entrance channel. In particular, we focus our attention on the role of the exothermicity and of the exit channel region of the interaction on the experimental observables. From the comparison between the theoretical results, insight about the main mechanisms governing the reaction is extracted, especially regarding the bimodal structure of the HF?v=2? nascent rotational state distributions. A good overall agreement with molecular beam scattering experiments has been obtained.

Exact state-to-state quantum dynamics of the F+HD HF(v'=2) + D reaction on model potential energy surfaces

D De Fazio;
2008

Abstract

In this paper, we present the results of a theoretical investigation on the dynamics of the title reaction at collision energies below 1.2 kcal/mol using rigorous quantum reactive scattering calculations. Vibrationally resolved integral and differential cross sections, as well as product rotational distributions, have been calculated using two electronically adiabatic potential energy surfaces, developed by us on the basis of semiempirical modifications of the entrance channel. In particular, we focus our attention on the role of the exothermicity and of the exit channel region of the interaction on the experimental observables. From the comparison between the theoretical results, insight about the main mechanisms governing the reaction is extracted, especially regarding the bimodal structure of the HF?v=2? nascent rotational state distributions. A good overall agreement with molecular beam scattering experiments has been obtained.
2008
Istituto di Nanotecnologia - NANOTEC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/430215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 35
social impact