We report a joint experimental, numerical and theoretical study of particle residence times in a novel vortex-based vessel for thermal processing of suspended particles. The tracer pulse-response method, in which the particle phase itself is employed as the tracer, is used to measure the particle residence time distribution (RTD) within a laboratory-scale model of a class of Solar Expanding Vortex Receiver-Reactor (SEVR). The operating parameters of particle size, gas volumetric flow rate and inlet velocity were systematically varied to assess their influence on the particle RTD and to determine the mechanisms controlling the behaviour of the two-phase flow in the SEVR. The particle RTD behaviour is also described by a compartment model consisting of a small plug flow reactor followed by a series of two interconnected continuously-stirred tank reactors (CSTRs).

Particle residence time distributions in a vortex-based solar particle receiver-reactor: An experimental, numerical and theoretical study

Solimene Roberto;Salatino Piero;
2020

Abstract

We report a joint experimental, numerical and theoretical study of particle residence times in a novel vortex-based vessel for thermal processing of suspended particles. The tracer pulse-response method, in which the particle phase itself is employed as the tracer, is used to measure the particle residence time distribution (RTD) within a laboratory-scale model of a class of Solar Expanding Vortex Receiver-Reactor (SEVR). The operating parameters of particle size, gas volumetric flow rate and inlet velocity were systematically varied to assess their influence on the particle RTD and to determine the mechanisms controlling the behaviour of the two-phase flow in the SEVR. The particle RTD behaviour is also described by a compartment model consisting of a small plug flow reactor followed by a series of two interconnected continuously-stirred tank reactors (CSTRs).
2020
Istituto di Ricerche sulla Combustione - IRC - Sede Napoli
CST
Particle
Residence time
RTD
Solar particle receiver
Solar vortex receiver
File in questo prodotto:
File Dimensione Formato  
prod_459724-doc_179046.pdf

solo utenti autorizzati

Descrizione: paper
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/430836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact