Marine mammal vocal elements have been investigated for decades to assess whether they correlate with stress levels or stress indicators. Due to their acoustic plasticity, the interpretation of dolphins' acoustic signals of has been studied most extensively. This work describes the acoustic parameters detected in whistle spectral contours, collected using passive acoustic monitoring (PAM), in a bycatch event that involved three Bottlenose dolphins during midwater commercial trawling. The results indicate a total number of 23 upsweep whistles recorded during the bycatch event, that were analyzed based on the acoustic parameters as follows: (Median; 25th percentile; 75th percentile) Dr (second), total duration (1.09; 0.88; 1.24); fmin (HZ), minimum frequency (5836.4; 5635.3; 5967.1); fmax (HZ), maximum frequency, (11,610 11,293; 11,810); fc (HZ), central frequency; (8665.2; 8492.9; 8982.8); BW (HZ), bandwidth (5836.4; 5635.3; 5967.1); Step, number of step (5; 4; 6). Furthermore, our data show that vocal production during the capture event was characterized by an undescribed to date combination of two signals, an ascending whistle (upsweep), and a pulsed signal that we called "low-frequency signal" in the frequency band between 4.5 and 7 kHz. This capture event reveals a novel aspect of T. truncatus acoustic communication, it confirms their acoustic plasticity, and suggests that states of discomfort are conveyed through their acoustic repertoire.

Simple Summary There is some evidence that the presence of dolphins in fishing areas represents a concrete economic loss for fishermen due to their depredation activities on the entangled fish on the nets. Bycatch events are one of the major sources of anthropogenic mortality of species of conservation interest in the world. T. truncatus is a plastic species and the more frequently observed species in the Adriatic Sea owing to the natural tendency to interact with the fishing activities in the area. This case report describes the acoustic parameters detected in whistle spectral contours associated with low-frequency signals recorded with a passive acoustic monitoring device in an exceptional event of bycatch that involved three individuals during a midwater commercial trawling in the Adriatic Sea. Marine mammal vocal elements have been investigated for decades to assess whether they correlate with stress levels or stress indicators. Due to their acoustic plasticity, the interpretation of dolphins' acoustic signals of has been studied most extensively. This work describes the acoustic parameters detected in whistle spectral contours, collected using passive acoustic monitoring (PAM), in a bycatch event that involved three Bottlenose dolphins during midwater commercial trawling. The results indicate a total number of 23 upsweep whistles recorded during the bycatch event, that were analyzed based on the acoustic parameters as follows: (Median; 25th percentile; 75th percentile) D-r (second), total duration (1.09; 0.88; 1.24); f(min) (HZ), minimum frequency (5836.4; 5635.3; 5967.1); f(max) (HZ), maximum frequency, (11,610 +/- 11,293; 11,810); f(c) (HZ), central frequency; (8665.2; 8492.9; 8982.8); BW (HZ), bandwidth (5836.4; 5635.3; 5967.1); Step, number of step (5; 4; 6). Furthermore, our data show that vocal production during the capture event was characterized by an undescribed to date combination of two signals, an ascending whistle (upsweep), and a pulsed signal that we called "low-frequency signal" in the frequency band between 4.5 and 7 kHz. This capture event reveals a novel aspect of T. truncatus acoustic communication, it confirms their acoustic plasticity, and suggests that states of discomfort are conveyed through their acoustic repertoire.

Bottlenose Dolphin (Tursiops truncatus) Whistle Modulation during a Trawl Bycatch Event in the Adriatic Sea

Sala Antonello;
2021

Abstract

Simple Summary There is some evidence that the presence of dolphins in fishing areas represents a concrete economic loss for fishermen due to their depredation activities on the entangled fish on the nets. Bycatch events are one of the major sources of anthropogenic mortality of species of conservation interest in the world. T. truncatus is a plastic species and the more frequently observed species in the Adriatic Sea owing to the natural tendency to interact with the fishing activities in the area. This case report describes the acoustic parameters detected in whistle spectral contours associated with low-frequency signals recorded with a passive acoustic monitoring device in an exceptional event of bycatch that involved three individuals during a midwater commercial trawling in the Adriatic Sea. Marine mammal vocal elements have been investigated for decades to assess whether they correlate with stress levels or stress indicators. Due to their acoustic plasticity, the interpretation of dolphins' acoustic signals of has been studied most extensively. This work describes the acoustic parameters detected in whistle spectral contours, collected using passive acoustic monitoring (PAM), in a bycatch event that involved three Bottlenose dolphins during midwater commercial trawling. The results indicate a total number of 23 upsweep whistles recorded during the bycatch event, that were analyzed based on the acoustic parameters as follows: (Median; 25th percentile; 75th percentile) D-r (second), total duration (1.09; 0.88; 1.24); f(min) (HZ), minimum frequency (5836.4; 5635.3; 5967.1); f(max) (HZ), maximum frequency, (11,610 +/- 11,293; 11,810); f(c) (HZ), central frequency; (8665.2; 8492.9; 8982.8); BW (HZ), bandwidth (5836.4; 5635.3; 5967.1); Step, number of step (5; 4; 6). Furthermore, our data show that vocal production during the capture event was characterized by an undescribed to date combination of two signals, an ascending whistle (upsweep), and a pulsed signal that we called "low-frequency signal" in the frequency band between 4.5 and 7 kHz. This capture event reveals a novel aspect of T. truncatus acoustic communication, it confirms their acoustic plasticity, and suggests that states of discomfort are conveyed through their acoustic repertoire.
2021
Marine mammal vocal elements have been investigated for decades to assess whether they correlate with stress levels or stress indicators. Due to their acoustic plasticity, the interpretation of dolphins' acoustic signals of has been studied most extensively. This work describes the acoustic parameters detected in whistle spectral contours, collected using passive acoustic monitoring (PAM), in a bycatch event that involved three Bottlenose dolphins during midwater commercial trawling. The results indicate a total number of 23 upsweep whistles recorded during the bycatch event, that were analyzed based on the acoustic parameters as follows: (Median; 25th percentile; 75th percentile) Dr (second), total duration (1.09; 0.88; 1.24); fmin (HZ), minimum frequency (5836.4; 5635.3; 5967.1); fmax (HZ), maximum frequency, (11,610 11,293; 11,810); fc (HZ), central frequency; (8665.2; 8492.9; 8982.8); BW (HZ), bandwidth (5836.4; 5635.3; 5967.1); Step, number of step (5; 4; 6). Furthermore, our data show that vocal production during the capture event was characterized by an undescribed to date combination of two signals, an ascending whistle (upsweep), and a pulsed signal that we called "low-frequency signal" in the frequency band between 4.5 and 7 kHz. This capture event reveals a novel aspect of T. truncatus acoustic communication, it confirms their acoustic plasticity, and suggests that states of discomfort are conveyed through their acoustic repertoire.
bottlenose dolphin
whistle
bycatch
signature
acoustic communication
stress
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/430929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact