A simple and reproducible approach for the synthesis of Cu-based heterogeneous catalysts, named flow chemisorption hydrolysis (flow-CH), is reported. The approach, derived from the CH method, allows size-controlled CuO nanoparticles (mean diameter 2.9 nm) to be obtained, that are highly and homogeneously dispersed into hierarchically meso-/macroporous silica monoliths. The Cu-based monolithic catalysts (CuO@SiO2-MN, 8.4 wt.% Cu) were studied in the styrene oxide ring opening reaction at 60 °C in the presence of isopropanol, under continuous flow-through conditions. A remarkable activity with a steady-state conversion of 97% for 13 h and 100% selectivity towards the corresponding ?-alkoxyalcohol was observed. The performances of CuO@SiO2-MN were higher than those obtained in batch conditions with the previously reported CuO/SiO2 catalysts and with the ground CuO@SiO2-MN monolith in terms of productivity and selectivity. Moreover, a negligible Cu leaching (<0.6 wt.%) in reaction medium was observed. After 13 h CuO@SiO2-MN catalysts could be regenerated by a mild calcination (220 °C) permitting reuse.

Copper Oxide Nanoparticles over Hierarchical Silica Monoliths for Continuous-Flow Selective Alcoholysis of Styrene Oxide

Marelli M;Zaccheria F;Pitzalis E;Scotti N;Evangelisti C
2023

Abstract

A simple and reproducible approach for the synthesis of Cu-based heterogeneous catalysts, named flow chemisorption hydrolysis (flow-CH), is reported. The approach, derived from the CH method, allows size-controlled CuO nanoparticles (mean diameter 2.9 nm) to be obtained, that are highly and homogeneously dispersed into hierarchically meso-/macroporous silica monoliths. The Cu-based monolithic catalysts (CuO@SiO2-MN, 8.4 wt.% Cu) were studied in the styrene oxide ring opening reaction at 60 °C in the presence of isopropanol, under continuous flow-through conditions. A remarkable activity with a steady-state conversion of 97% for 13 h and 100% selectivity towards the corresponding ?-alkoxyalcohol was observed. The performances of CuO@SiO2-MN were higher than those obtained in batch conditions with the previously reported CuO/SiO2 catalysts and with the ground CuO@SiO2-MN monolith in terms of productivity and selectivity. Moreover, a negligible Cu leaching (<0.6 wt.%) in reaction medium was observed. After 13 h CuO@SiO2-MN catalysts could be regenerated by a mild calcination (220 °C) permitting reuse.
2023
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
continuous-flow; Cu nanoparticles; silica monolith; styrene alcoholysis
File in questo prodotto:
File Dimensione Formato  
prod_478735-doc_196210.pdf

accesso aperto

Descrizione: Copper Oxide Nanoparticles over Hierarchical Silica Monoliths for Continuous-Flow Selective Alcoholysis of Styrene Oxide
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/431509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact