Nonnative insects and pathogens pose major threats to forest ecosystems worldwide, greatly diminishing the ecosystem services trees provide. Given the high global diversity of arthropod and microbial species, their often unknown biological features or even identities, and their ease of accidental transport, there is an urgent need to better forecast the most likely species to cause damage. Several risk assessment approaches have been proposed or implemented to guide preventative measures. However, the underlying assumptions of each approach have rarely been explicitly identified or critically evaluated. We propose that evaluating the implicit assumptions, optimal usages, and advantages and limitations of each approach could help improve their combined utility. We consider four general categories: using prior pest status in native and previously invaded regions; evaluating statistical patterns of traits and gene sequences associated with a high impact; sentinel and other plantings to expose trees to insects and pathogens in native, nonnative, or experimental settings; and laboratory assays using detached plant parts or seedlings under controlled conditions. We evaluate how and under what conditions the assumptions of each approach are best met and propose methods for integrating multiple approaches to improve our forecasting ability and prevent losses from invasive pests.

Approaches to Forecasting Damage by Invasive Forest Insects and Pathogens: A Cross-Assessment

Alberto Santini;
2023

Abstract

Nonnative insects and pathogens pose major threats to forest ecosystems worldwide, greatly diminishing the ecosystem services trees provide. Given the high global diversity of arthropod and microbial species, their often unknown biological features or even identities, and their ease of accidental transport, there is an urgent need to better forecast the most likely species to cause damage. Several risk assessment approaches have been proposed or implemented to guide preventative measures. However, the underlying assumptions of each approach have rarely been explicitly identified or critically evaluated. We propose that evaluating the implicit assumptions, optimal usages, and advantages and limitations of each approach could help improve their combined utility. We consider four general categories: using prior pest status in native and previously invaded regions; evaluating statistical patterns of traits and gene sequences associated with a high impact; sentinel and other plantings to expose trees to insects and pathogens in native, nonnative, or experimental settings; and laboratory assays using detached plant parts or seedlings under controlled conditions. We evaluate how and under what conditions the assumptions of each approach are best met and propose methods for integrating multiple approaches to improve our forecasting ability and prevent losses from invasive pests.
2023
Istituto per la Protezione Sostenibile delle Piante - IPSP
biological invasions
forecasting models
risk analysis
screening techniques
sentinel plants
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/431547
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact