After half a century of debate, superconductivity in doped SrTiO3 has come to the fore again with the discovery of interfacial superconductivity in the LaAlO3/SrTiO3 heterostructures. While these interfaces share the interesting properties of bulk SrTiO3, quantum confinement generates a complex band structure involving bands with different orbital symmetries whose occupancy is tunable by electrostating doping. Multigap superconductivity has been predicted to emerge in LaAlO3/SrTiO3 at large doping, with a Bose-Einstein condensation character at the Lifshtiz transition. In this article, we report on the measurement of the upper critical magnetic field H-c2 of superconducting (110)-oriented LaAlO3/SrTiO3 heterostructures and evidence a two-gap superconducting regime at high doping. Our results are quantitatively explained by a theoretical model based on the formation of an unconventional s(+/-)-wave superconducting state with a repulsive coupling between the two condensates.
Two-gap s(+/-)-wave superconductivity at an oxide interface
Venditti, G.;Grilli, M.;Caprara, S.;
2022
Abstract
After half a century of debate, superconductivity in doped SrTiO3 has come to the fore again with the discovery of interfacial superconductivity in the LaAlO3/SrTiO3 heterostructures. While these interfaces share the interesting properties of bulk SrTiO3, quantum confinement generates a complex band structure involving bands with different orbital symmetries whose occupancy is tunable by electrostating doping. Multigap superconductivity has been predicted to emerge in LaAlO3/SrTiO3 at large doping, with a Bose-Einstein condensation character at the Lifshtiz transition. In this article, we report on the measurement of the upper critical magnetic field H-c2 of superconducting (110)-oriented LaAlO3/SrTiO3 heterostructures and evidence a two-gap superconducting regime at high doping. Our results are quantitatively explained by a theoretical model based on the formation of an unconventional s(+/-)-wave superconducting state with a repulsive coupling between the two condensates.File | Dimensione | Formato | |
---|---|---|---|
prod_465269-doc_183634.pdf
solo utenti autorizzati
Descrizione: Two-gap s±-wave superconductivity at an oxide interface
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.