Iceland is very active tectonically as it is crossed by the Mid-Atlantic Ridge and its associated rift zones and transform faults. The high-temperature geothermal systems are located within the neo-volcanic zone. A detailed comparison of the main features of the resistivity models and well data in exploited geothermal fields has shown that the resistivity structure of Iceland is mainly controlled by alteration mineralogy. In areas where the geothermal circulation and related alteration take place at depths of more than 1.5 km, the investigation depth of the DC and TEM methods is inadequate and the MT method appears to be the most suitable survey method. MT soundings were carried out to determine the deep structure between two neighboring Quaternary geothermal fields: the Hengill volcanic complex and the Brennisteinsfjoll geothermal system, both known as high-temperature systems. MT data were analyzed and modeled using 1D and 2D inversion schemes. Our model of electrical conductivity can be related to secondary mineralization from geothermal fluids. At shallow depths, the resistivity model obtained from the MT data is consistent with the general geoelectrical models of high-temperature geothermal systems in Iceland, as revealed by shallow DC and TEM surveys. The current MT results reveal the presence of an outcropping resistive layer, identified as the typical unaltered porous basalt of the upper crust. This layer is underlain by a highly conductive cap resolved as the smectite–zeolite zone. Below this cap a less conductive zone is identified as the epidote–chlorite zone. A highly conductive material has been recognized in the middle of the profile, at about 5 km depth, and has been interpreted as cooling partial melt representing the main heat source of the geothermal system. This conductor may be connected to the shallow structure through a vertical fault zone located close to the southern edge of the profile.

The deep geothermal structure of the mid-Atlantic ridge deduced from MT data in SW Iceland.

Manzella A
2005

Abstract

Iceland is very active tectonically as it is crossed by the Mid-Atlantic Ridge and its associated rift zones and transform faults. The high-temperature geothermal systems are located within the neo-volcanic zone. A detailed comparison of the main features of the resistivity models and well data in exploited geothermal fields has shown that the resistivity structure of Iceland is mainly controlled by alteration mineralogy. In areas where the geothermal circulation and related alteration take place at depths of more than 1.5 km, the investigation depth of the DC and TEM methods is inadequate and the MT method appears to be the most suitable survey method. MT soundings were carried out to determine the deep structure between two neighboring Quaternary geothermal fields: the Hengill volcanic complex and the Brennisteinsfjoll geothermal system, both known as high-temperature systems. MT data were analyzed and modeled using 1D and 2D inversion schemes. Our model of electrical conductivity can be related to secondary mineralization from geothermal fluids. At shallow depths, the resistivity model obtained from the MT data is consistent with the general geoelectrical models of high-temperature geothermal systems in Iceland, as revealed by shallow DC and TEM surveys. The current MT results reveal the presence of an outcropping resistive layer, identified as the typical unaltered porous basalt of the upper crust. This layer is underlain by a highly conductive cap resolved as the smectite–zeolite zone. Below this cap a less conductive zone is identified as the epidote–chlorite zone. A highly conductive material has been recognized in the middle of the profile, at about 5 km depth, and has been interpreted as cooling partial melt representing the main heat source of the geothermal system. This conductor may be connected to the shallow structure through a vertical fault zone located close to the southern edge of the profile.
2005
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
Geothermal field
Magnetotelluric
High-temperature system
Neo-volcanic zone
Hengill
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/431790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 56
social impact