In this experimental work, the ethanol steam reforming reaction for producing hydrogen was studied in both a traditional reactor (TR) and a Pd-Ag dense membrane reactor (MR). Both reactors have been packed with a commercial Ru-based catalyst. The experimental tests have been performed in the temperature range 400-500 C and in the pressure range 2.0-3.6 bar. The results are reported in terms of ethanol conversion, hydrogen production, product selectivities and hydrogen recovery (for the MR only). It has been found that the MR is able to increase the ethanol conversion as well as increase the hydrogen production with respect to a traditional reactor. Moreover, part of the hydrogen produced in the MR is recovered as a CO-free hydrogen stream and is suitable for feeding a PEM fuel cell system.
Hydrogen production by ethanol steam reforming: experimental study of Pd-Ag membrane reactor and traditional reactor behaviour
Basile A;Iulianelli A;Liguori;
2008
Abstract
In this experimental work, the ethanol steam reforming reaction for producing hydrogen was studied in both a traditional reactor (TR) and a Pd-Ag dense membrane reactor (MR). Both reactors have been packed with a commercial Ru-based catalyst. The experimental tests have been performed in the temperature range 400-500 C and in the pressure range 2.0-3.6 bar. The results are reported in terms of ethanol conversion, hydrogen production, product selectivities and hydrogen recovery (for the MR only). It has been found that the MR is able to increase the ethanol conversion as well as increase the hydrogen production with respect to a traditional reactor. Moreover, part of the hydrogen produced in the MR is recovered as a CO-free hydrogen stream and is suitable for feeding a PEM fuel cell system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.