We prepared an orthogonal compact electron-donor (phenoxazine, PXZ)-acceptor (naphthalimide, NI) dyad (NI-PXZ), to study the photophysics of the thermally-activated delayed fluorescence (TADF), which has a luminescence lifetime of 16.4 ns (99.2 %)/17.0 ?s (0.80 %). A weak charge transfer (CT) absorption band was observed for the dyad, indicating non-negligible electronic coupling between the donor and acceptor at the ground state. Femtosecond transient absorption spectroscopy shows a fast charge separation (CS) (ca. 2.02~2.72 ps), the majority of the singlet CS state is short-lived, especially in polar solvents (?CR = 10.3 ps in acetonitrile, vs. 1.83 ns in toluene, 7.81 ns in n-hexane). Nanosecond transient absorption spectroscopy detects a long-lived transient species in n-hexane, which is with a mixed triplet local excited state (3LE) and charge separated state (3CS), the lifetime is 15.4 ?s. In polar solvents, such as tetrahydrofuran and acetonitrile, a neat 3CS state was observed, whose lifetimes are 226 ns and 142 ns, respectively. Time-resolved electron paramagnetic resonance (TREPR) spectra indicate the existence of strongly spin exchanged 3LE/3CT states, with the effective zero field splitting (ZFS) |D| and |E| parameters of 1484 MHz and 109 MHz, respectively, much smaller than that of the native 3NI state (2475 and 135 MHz). It is rare but solid experimental evidence that a closely-lying 3LE state is crucial for occurrence of TADF and this 3LE state is an essential intermediate state to facilitate reverse intersystem crossing in TADF systems.

Red Light-Emitting Thermally-Activated Delayed Fluorescence of Naphthalimide-Phenoxazine Electron Donor-Acceptor Dyad: Time-Resolved Optical and Magnetic Spectroscopic Studies

Di Donato M;
2022

Abstract

We prepared an orthogonal compact electron-donor (phenoxazine, PXZ)-acceptor (naphthalimide, NI) dyad (NI-PXZ), to study the photophysics of the thermally-activated delayed fluorescence (TADF), which has a luminescence lifetime of 16.4 ns (99.2 %)/17.0 ?s (0.80 %). A weak charge transfer (CT) absorption band was observed for the dyad, indicating non-negligible electronic coupling between the donor and acceptor at the ground state. Femtosecond transient absorption spectroscopy shows a fast charge separation (CS) (ca. 2.02~2.72 ps), the majority of the singlet CS state is short-lived, especially in polar solvents (?CR = 10.3 ps in acetonitrile, vs. 1.83 ns in toluene, 7.81 ns in n-hexane). Nanosecond transient absorption spectroscopy detects a long-lived transient species in n-hexane, which is with a mixed triplet local excited state (3LE) and charge separated state (3CS), the lifetime is 15.4 ?s. In polar solvents, such as tetrahydrofuran and acetonitrile, a neat 3CS state was observed, whose lifetimes are 226 ns and 142 ns, respectively. Time-resolved electron paramagnetic resonance (TREPR) spectra indicate the existence of strongly spin exchanged 3LE/3CT states, with the effective zero field splitting (ZFS) |D| and |E| parameters of 1484 MHz and 109 MHz, respectively, much smaller than that of the native 3NI state (2475 and 135 MHz). It is rare but solid experimental evidence that a closely-lying 3LE state is crucial for occurrence of TADF and this 3LE state is an essential intermediate state to facilitate reverse intersystem crossing in TADF systems.
2022
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
charge transfer; intersystem crossing; naphthalimide; thermally activated delayed fluorescence; triplet state
File in questo prodotto:
File Dimensione Formato  
prod_467683-doc_189763.pdf

Open Access dal 24/05/2023

Descrizione: "This is the peer reviewed version of the following article: X. Zhang, X. Liu, M. Taddei, L. Bussotti, I. Kurganskii, M. Li, X. Jiang, L. Xing, S. Ji, Y. Huo, J. Zhao, M. Di Donato, Y. Wan, Z. Zhao, M. V. Fedin, Chem. Eur. J. 2022, 28, e202200510, which has been published in final form at https://doi.org/10.1002/chem.202200510. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited."
Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 9.63 MB
Formato Adobe PDF
9.63 MB Adobe PDF Visualizza/Apri
prod_467683-doc_184337.pdf

solo utenti autorizzati

Descrizione: Red Light-Emitting Thermally-Activated Delayed Fluorescence of Naphthalimide-Phenoxazine Electron Donor-Acceptor Dyad...
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 9.92 MB
Formato Adobe PDF
9.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/432501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact