Given a bipartite graph and a prescribed layout of it, we address the problem of partitioning the edge set of the graph into the minimum number of non-crossing matchings, that is subsets of edges no two of which share a common vertex or cross each other in the plane. We discuss some lower and upper bounds on the minimum number of classes of such a partition into non-crossing matchings, and devise an exact almost linear algorithm.

Optimal Partition of a Bipartite Graph with prescribed layout into Non-Crossing Matchings

NICOLOSO Sara
2001

Abstract

Given a bipartite graph and a prescribed layout of it, we address the problem of partitioning the edge set of the graph into the minimum number of non-crossing matchings, that is subsets of edges no two of which share a common vertex or cross each other in the plane. We discuss some lower and upper bounds on the minimum number of classes of such a partition into non-crossing matchings, and devise an exact almost linear algorithm.
2001
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Matching
colouring
bipartite graphs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/432872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact