The surface properties of a biomaterial are fundamental in order to determine the response of the host tissue. In the present study we have followed a particular biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built a calcified extracellular matrix on a titanium fiber-mesh surface. In comparison with control conditions, the electromagnetic stimulation (magnetic field intensity, 2 mT; frequency, 75 Hz) caused higher cell proliferation and increased surface coating with type-I collagen, decorin, and osteopontin (9.8-fold, 11.3-fold, and 9.5-fold, respectively). RT-PCR analysis revealed the electromagnetically upregulated transcription specific for the foregoing matrix proteins and for the growth factor TGF-b. The immunofluorescence of type-I collagen, decorin, and osteopontin showed their colocalization in the cell-rich areas. The use of an electromagnetic bioreactor aimed at obtaining the surface modification of the biocompatible metallic scaffold in terms of cell colonization and coating with calcified extracellular matrix. The superficially modified biomaterial could be used, in clinical applications, as an implant for bone repair.

Electromagnetic enhancement of a culture of human SAOS-2 osteoblasts seeded onto titanium fiber-mesh scaffolds.

Mazzini G;
2008

Abstract

The surface properties of a biomaterial are fundamental in order to determine the response of the host tissue. In the present study we have followed a particular biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built a calcified extracellular matrix on a titanium fiber-mesh surface. In comparison with control conditions, the electromagnetic stimulation (magnetic field intensity, 2 mT; frequency, 75 Hz) caused higher cell proliferation and increased surface coating with type-I collagen, decorin, and osteopontin (9.8-fold, 11.3-fold, and 9.5-fold, respectively). RT-PCR analysis revealed the electromagnetically upregulated transcription specific for the foregoing matrix proteins and for the growth factor TGF-b. The immunofluorescence of type-I collagen, decorin, and osteopontin showed their colocalization in the cell-rich areas. The use of an electromagnetic bioreactor aimed at obtaining the surface modification of the biocompatible metallic scaffold in terms of cell colonization and coating with calcified extracellular matrix. The superficially modified biomaterial could be used, in clinical applications, as an implant for bone repair.
2008
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
Proliferation
Biomaterials
magnetic stimulation
immunofluorescence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/43297
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 38
social impact