The nucleus contains diacylglycerol kinases (DGKs), i.e., the enzymes that, by converting diacylglycerol (DG) into phosphatidic acid, terminate DG-dependent events. It has been demonstrated that nuclear DGK-zeta interferes with cell cycle progression. We previously reported that nuclear DGK-zeta expression increased during myogenic differentiation, whereas its down-regulation impaired differentiation. Here, we evaluated the possible involvement of nuclear DGK-zeta in cell cycle progression of C2C12 myoblasts. Overexpression of a wild-type DGK-zeta, which mainly localized to the nucleus (but not of a kinase dead mutant or of a mutant that did not enter the nucleus), blocked the cells in the G1 phase of the cell cycle, as demonstrated by in situ analysis of biotinylated-16-dUTP incorporated into newly synthesized DNA and by flow cytometry. In contrast, down-regulation of endogenous DGK-zeta by short interfering RNA (siRNA) increased the number of cells in both the S and G2/M phases of the cell cycle. Cell cycle arrest of cells overexpressing wild-type DGK-zeta was accompanied by decreased levels of retinoblastoma protein phosphorylated on Ser-807/811. Down-regulation of endogenous DGK-zeta, using siRNA, prevented the cell cycle block characterizing C2C12 cell myogenic differentiation. Overall, our results identify nuclear DGK-zeta as a key determinant of cell cycle progression and differentiation of C2C12 cells.
Nuclear diacylglycerol kinase-zeta is a negative regulator of cell cycle progression in C2C12 mouse myoblasts.
Martelli AM
2007
Abstract
The nucleus contains diacylglycerol kinases (DGKs), i.e., the enzymes that, by converting diacylglycerol (DG) into phosphatidic acid, terminate DG-dependent events. It has been demonstrated that nuclear DGK-zeta interferes with cell cycle progression. We previously reported that nuclear DGK-zeta expression increased during myogenic differentiation, whereas its down-regulation impaired differentiation. Here, we evaluated the possible involvement of nuclear DGK-zeta in cell cycle progression of C2C12 myoblasts. Overexpression of a wild-type DGK-zeta, which mainly localized to the nucleus (but not of a kinase dead mutant or of a mutant that did not enter the nucleus), blocked the cells in the G1 phase of the cell cycle, as demonstrated by in situ analysis of biotinylated-16-dUTP incorporated into newly synthesized DNA and by flow cytometry. In contrast, down-regulation of endogenous DGK-zeta by short interfering RNA (siRNA) increased the number of cells in both the S and G2/M phases of the cell cycle. Cell cycle arrest of cells overexpressing wild-type DGK-zeta was accompanied by decreased levels of retinoblastoma protein phosphorylated on Ser-807/811. Down-regulation of endogenous DGK-zeta, using siRNA, prevented the cell cycle block characterizing C2C12 cell myogenic differentiation. Overall, our results identify nuclear DGK-zeta as a key determinant of cell cycle progression and differentiation of C2C12 cells.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


