The self-channeling of extremely high power laser beams permits the ignition of plasma filaments in dielectrics, such as air and glasses. If no constraints are imposed by the geometry of the material, the plasma appears as a straight bright line. Here, we show that plasma filaments may be ignited in the vicinity of the interface between two materials in optical fibers, i.e., either the core-cladding or the cladding-air interface. In the latter case, helical plasma filaments lead to the emission of rainbow spiral beams. In perspective, our results may pave the way to a novel approach for micro-structuring optical fibers, and for generating light beams with orbital angular momentum.

Exploiting the geometry of optical fibers for igniting helical-shape plasma filaments

Wabnitz S
2022

Abstract

The self-channeling of extremely high power laser beams permits the ignition of plasma filaments in dielectrics, such as air and glasses. If no constraints are imposed by the geometry of the material, the plasma appears as a straight bright line. Here, we show that plasma filaments may be ignited in the vicinity of the interface between two materials in optical fibers, i.e., either the core-cladding or the cladding-air interface. In the latter case, helical plasma filaments lead to the emission of rainbow spiral beams. In perspective, our results may pave the way to a novel approach for micro-structuring optical fibers, and for generating light beams with orbital angular momentum.
2022
Istituto Nazionale di Ottica - INO
978-1-5106-5163-0
Multimode fibers; multiphoton ionization; laser damages; plasma filaments; optical breakdown
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/433129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact