Supramolecular peptides exhibit obvious similarities with collagen fibers in terms of self-assembly characteristics, nanofibrous structure, and responsiveness to external stimuli. Here, a series of supramolecular peptides were developed by altering the amino acid sequence, enabling the self-assembly of three types of 4-biphenylacetic acid (BPAA)-tripeptides into fibrous hydrogel through hydrogen bonding and ?-? stacking under the influence of ion induction. Transmission electron and scanning electron microscopies revealed that the diameter of the fiber within nanofibrous hydrogels was ~ 10 and ~ 40 nm, respectively, which was similar with the self-assembled collagen fibers. For this reason, these hydrogels could be considered as a biomimetic extracellular substitute. Meanwhile, the gelation concentration induced by ions was even lower than 0.66 wt%, with an elastic modulus of ~ 0.27 kPa, corresponding to a water content of 99.34 wt%. In addition, the three supramolecular hydrogels were found to be good substrates for L929 cell adhesion and MC-3T3 cell proliferation. The overall results implied that BPAA-based hydrogels have a lucrative application potential as cell carriers. Graphical Abstract: [Figure not available: see fulltext.].

Nanofibrous polypeptide hydrogels with collagen-like structure as biomimetic extracellular matrix

Ronca A;D'Amora U;Raucci MG;Ambrosio L;
2023

Abstract

Supramolecular peptides exhibit obvious similarities with collagen fibers in terms of self-assembly characteristics, nanofibrous structure, and responsiveness to external stimuli. Here, a series of supramolecular peptides were developed by altering the amino acid sequence, enabling the self-assembly of three types of 4-biphenylacetic acid (BPAA)-tripeptides into fibrous hydrogel through hydrogen bonding and ?-? stacking under the influence of ion induction. Transmission electron and scanning electron microscopies revealed that the diameter of the fiber within nanofibrous hydrogels was ~ 10 and ~ 40 nm, respectively, which was similar with the self-assembled collagen fibers. For this reason, these hydrogels could be considered as a biomimetic extracellular substitute. Meanwhile, the gelation concentration induced by ions was even lower than 0.66 wt%, with an elastic modulus of ~ 0.27 kPa, corresponding to a water content of 99.34 wt%. In addition, the three supramolecular hydrogels were found to be good substrates for L929 cell adhesion and MC-3T3 cell proliferation. The overall results implied that BPAA-based hydrogels have a lucrative application potential as cell carriers. Graphical Abstract: [Figure not available: see fulltext.].
2023
polypeptide hydrogels
regenerative medicine
in vitro cell-material interaction
in vivo animal model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/433160
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact