A significant impediment to the success of cancer chemotherapy is the occurrence of multidrug resistance, which, in many cases, is attributable to overexpression of membrane transport proteins, such as the 170-kDa P-glycoprotein (P-gp). Also, upregulation of the phosphatidylinositol 3-kinase (PI3K)/Akt-signaling pathway is known to play an important role in drug resistance, and has been implicated in the aggressiveness of a number of different cancers, including T-acute lymphoblastic leukemia (T-ALL). We have investigated the therapeutic potential of the novel Akt inhibitor, perifosine (a synthetic alkylphospholipid), on human T-ALL CEM cells (CEM-R), characterized by both overexpression of P-gp and constitutive upregulation of the PI3K/Akt network. Perifosine treatment induced death by apoptosis in CEM-R cells. Apoptosis was characterized by caspase activation, Bid cleavage and cytochrome c release from mitochondria. The proapoptotic effect of perifosine was in part dependent on the Fas/FasL interactions and c-Jun NH(2)-terminal kinase (JNK) activation, as well as on the integrity of lipid rafts. Perifosine downregulated the expression of P-gp mRNA and protein and this effect required JNK activity. Our findings indicate that perifosine is a promising therapeutic agent for treatment of T-ALL cases characterized by both upregulation of the PI3K/Akt survival pathway and overexpression of P-gp.

The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute

Martelli AM
2008

Abstract

A significant impediment to the success of cancer chemotherapy is the occurrence of multidrug resistance, which, in many cases, is attributable to overexpression of membrane transport proteins, such as the 170-kDa P-glycoprotein (P-gp). Also, upregulation of the phosphatidylinositol 3-kinase (PI3K)/Akt-signaling pathway is known to play an important role in drug resistance, and has been implicated in the aggressiveness of a number of different cancers, including T-acute lymphoblastic leukemia (T-ALL). We have investigated the therapeutic potential of the novel Akt inhibitor, perifosine (a synthetic alkylphospholipid), on human T-ALL CEM cells (CEM-R), characterized by both overexpression of P-gp and constitutive upregulation of the PI3K/Akt network. Perifosine treatment induced death by apoptosis in CEM-R cells. Apoptosis was characterized by caspase activation, Bid cleavage and cytochrome c release from mitochondria. The proapoptotic effect of perifosine was in part dependent on the Fas/FasL interactions and c-Jun NH(2)-terminal kinase (JNK) activation, as well as on the integrity of lipid rafts. Perifosine downregulated the expression of P-gp mRNA and protein and this effect required JNK activity. Our findings indicate that perifosine is a promising therapeutic agent for treatment of T-ALL cases characterized by both upregulation of the PI3K/Akt survival pathway and overexpression of P-gp.
2008
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/43353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact