The sediments of Lake Fimon, N-Italy, contain the first continuous archive of the Late Pleistocene environmental and climate history of the southern Alpine foreland. We present here the detailed palynological record of the interval between Termination II and the Last Glacial Maximum. The ageedepth model is obtained by radiocarbon dating in the uppermost part of the record. Downward, we correlated major forest expansion and contraction events to isotopic events in the Greenland Ice core records, via a stepping-stone approach involving intermediate correlation to isotopic events dated by TIMS U/Th in Alpine and Apennine stalagmites, and to pollen records from marine cores of the Iberian margin. Modelled ages obtained by Bayesian analysis of deposition are thoroughly consistent with actual ages, with maximum offset of 1700 years. Sharp expansion of broad-leaved temperate forest and of sudden water table rise mark the onset of the Last Interglacial after a treeless steppe phase at the end of penultimate glaciation. This event is actually a two-step process which matches the two-step rise observed in the isotopic record of the nearby Antro del Corchia stalagmite, respectively dated to 132.5 2.5 and 129 1.5 ka. At the interglacial decline mixed oak forests were replaced by oceanic mixed forests, the latter persisting further for 7 ka till the end of the Eemian succession. Warm-temperate woody species are still abundant at the Eemian end, corroborating a steep gradient between central Europe and the Alpine divide at the inception of the last glacial. After a stadial phase marked by moderate forest decline, a new expansion of warm broad-leaved forests, interrupted by minor events and followed by mixed oceanic forests, can be identified with the north-alpine Saint Germain I. The spread of beech during the oceanic phase is a valuable circumalpine marker. The subsequent stadialeinterstadial succession, lacking the telocratic oceanic phase, is also consistent with the evidence at the north-alpine foreland. The Middle Würmian (full glacial) is marked by persistence of mixed forests dominated by conifers but with significant lime and other broad-leaved species. A major Arboreal Pollen decrease is observed at modelled age of 38.7 0.5 ka (larch expansion and last occurrence of lime), which has been related to Heinrich Event 4. The evidence of afforestation persisting south of the Alps throughout most of MIS 3 contrasts with a boreal and continental landscape known for the northern alpine foreland, pointing to a sharp rainfall boundary at the Alpine divide and to southern air circulation. This is in agreement with the Alpine paleoglaciological record and is supported by the pressure and rainfall patterns designed by mesoscale paleoclimate simulations. Strenghtening the continental high pressure during the full glacial triggered cyclogenesis in the middle latitude eastern Europe and orographic rainfall in the eastern Alps and the Balkanic mountains, thus allowing forests development at current sea-level altitudes.

The vegetation and climate history of the last glacial cycle in a new pollen record from Lake Fimon (southern Alpine foreland, N-Italy).

2010

Abstract

The sediments of Lake Fimon, N-Italy, contain the first continuous archive of the Late Pleistocene environmental and climate history of the southern Alpine foreland. We present here the detailed palynological record of the interval between Termination II and the Last Glacial Maximum. The ageedepth model is obtained by radiocarbon dating in the uppermost part of the record. Downward, we correlated major forest expansion and contraction events to isotopic events in the Greenland Ice core records, via a stepping-stone approach involving intermediate correlation to isotopic events dated by TIMS U/Th in Alpine and Apennine stalagmites, and to pollen records from marine cores of the Iberian margin. Modelled ages obtained by Bayesian analysis of deposition are thoroughly consistent with actual ages, with maximum offset of 1700 years. Sharp expansion of broad-leaved temperate forest and of sudden water table rise mark the onset of the Last Interglacial after a treeless steppe phase at the end of penultimate glaciation. This event is actually a two-step process which matches the two-step rise observed in the isotopic record of the nearby Antro del Corchia stalagmite, respectively dated to 132.5 2.5 and 129 1.5 ka. At the interglacial decline mixed oak forests were replaced by oceanic mixed forests, the latter persisting further for 7 ka till the end of the Eemian succession. Warm-temperate woody species are still abundant at the Eemian end, corroborating a steep gradient between central Europe and the Alpine divide at the inception of the last glacial. After a stadial phase marked by moderate forest decline, a new expansion of warm broad-leaved forests, interrupted by minor events and followed by mixed oceanic forests, can be identified with the north-alpine Saint Germain I. The spread of beech during the oceanic phase is a valuable circumalpine marker. The subsequent stadialeinterstadial succession, lacking the telocratic oceanic phase, is also consistent with the evidence at the north-alpine foreland. The Middle Würmian (full glacial) is marked by persistence of mixed forests dominated by conifers but with significant lime and other broad-leaved species. A major Arboreal Pollen decrease is observed at modelled age of 38.7 0.5 ka (larch expansion and last occurrence of lime), which has been related to Heinrich Event 4. The evidence of afforestation persisting south of the Alps throughout most of MIS 3 contrasts with a boreal and continental landscape known for the northern alpine foreland, pointing to a sharp rainfall boundary at the Alpine divide and to southern air circulation. This is in agreement with the Alpine paleoglaciological record and is supported by the pressure and rainfall patterns designed by mesoscale paleoclimate simulations. Strenghtening the continental high pressure during the full glacial triggered cyclogenesis in the middle latitude eastern Europe and orographic rainfall in the eastern Alps and the Balkanic mountains, thus allowing forests development at current sea-level altitudes.
2010
Istituto per la Dinamica dei Processi Ambientali - IDPA - Sede Venezia
Istituto di Geologia Ambientale e Geoingegneria - IGAG
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/433575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 79
social impact