Friedreich ataxia (FRDA) is caused by a GAA triplet expansion in the first intron of the X25 gene. The X25 gene encodes a 210-amino acid protein, frataxin (A isoform). Here, we report the identification of a new transcript of the X25 gene generated by alternative splicing by the use of a second donor splice site in the intron 4. Full-length cDNA transcript sequence revealed an insertion of 8 bp between 4 and 5a exon sequence. This event leads to a frameshift in the mRNA reading frame and introduces a new stop codon at position 589. Therefore, this X25 transcript variant may encode a 196-amino acid protein, the A1 isoform, that structurally differs from the main A isoform of 210 amino acids after residue 160. In all human tissues analyzed, reverse transcription-polymerase chain reaction experiments demonstrated that the A1 isoform was expressed at low levels compared with the predominant A isoform. No difference in A and A1 isoform expression rate was detected between FRDA patients and normal controls. We did not find an A1 like splice variant in rodents.
Identification of a novel transcript of X25, the human gene involved in Friedreich ataxia
Monticelli A;
2002
Abstract
Friedreich ataxia (FRDA) is caused by a GAA triplet expansion in the first intron of the X25 gene. The X25 gene encodes a 210-amino acid protein, frataxin (A isoform). Here, we report the identification of a new transcript of the X25 gene generated by alternative splicing by the use of a second donor splice site in the intron 4. Full-length cDNA transcript sequence revealed an insertion of 8 bp between 4 and 5a exon sequence. This event leads to a frameshift in the mRNA reading frame and introduces a new stop codon at position 589. Therefore, this X25 transcript variant may encode a 196-amino acid protein, the A1 isoform, that structurally differs from the main A isoform of 210 amino acids after residue 160. In all human tissues analyzed, reverse transcription-polymerase chain reaction experiments demonstrated that the A1 isoform was expressed at low levels compared with the predominant A isoform. No difference in A and A1 isoform expression rate was detected between FRDA patients and normal controls. We did not find an A1 like splice variant in rodents.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.