Recent studies have shown that mesenchymal stem cells obtained from periodontal ligament (PDL-MSCs) are multipotent cells that have similar features of the bone marrow and dental pulp MSCs and are capable of proliferating and producing different types of tissue such as bone and tooth associated-tissues. Human PDL-MSCs expanded ex vivo were induced to osteogenesis, seeded in three-dimensional biocompatible scaffolds (fibrin sponge, bovine-derived substitutes) and examined using light, scanning and transmission electron microscopy. Morphological observations showed extensive growth of cellular biomass partially covering the scaffolds after 4 weeks of incubation in mineralization medium. These findings indicate that periodontal ligament can be an easily and efficient autologous source of stem cells with a high expansion capacity and ability to differentiate in osteogenic cells that can colonize and grow connected to bio-compatible scaffold. It can be suggested that the use of PDL-MSCs for generating graft biomaterials is advantageous for bone tissue engineering in regenerative dentistry. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res A 2008.

Regenerative potential of human periodontal ligament derived stem cells on three-dimensional biomaterials: A morphological report.

Zini N;
2008

Abstract

Recent studies have shown that mesenchymal stem cells obtained from periodontal ligament (PDL-MSCs) are multipotent cells that have similar features of the bone marrow and dental pulp MSCs and are capable of proliferating and producing different types of tissue such as bone and tooth associated-tissues. Human PDL-MSCs expanded ex vivo were induced to osteogenesis, seeded in three-dimensional biocompatible scaffolds (fibrin sponge, bovine-derived substitutes) and examined using light, scanning and transmission electron microscopy. Morphological observations showed extensive growth of cellular biomass partially covering the scaffolds after 4 weeks of incubation in mineralization medium. These findings indicate that periodontal ligament can be an easily and efficient autologous source of stem cells with a high expansion capacity and ability to differentiate in osteogenic cells that can colonize and grow connected to bio-compatible scaffold. It can be suggested that the use of PDL-MSCs for generating graft biomaterials is advantageous for bone tissue engineering in regenerative dentistry. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res A 2008.
2008
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
biomaterials
human
mesenchymal stem cells
periodontium
osteogenesis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/43367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact