The aim of this work is to assess how the presence of cellulose-based bio-plastics influence the biological stabilization of mixed Municipal Solid Waste (MSW). For the scope, two cellulose acetate bio-plastics have been mixed with a synthetic mixed waste to create samples with and without bio-plastics. A self-induced biostabilization has been carried out for 7 and 14 days where temperature and off-gas have been monitored continuously. Results about temperature evolution, O-2 consumption, CO2 production and respiratory quotient did not show a substantial difference regarding both the duration of the process and the presence of cellulose-based bio-plastics on the mixture. On the average, the temperature peak and the maximum daily O-2 consumption and CO2 production were 52.2 degrees C, 35.81 g O-2/kg DM *d and 48.95 g CO2/kg DM *d respectively. Disintegration of bio-plastics samples after 7 and 14 days were comparable (on the average 23.13%). The self-induced biostabilization gave its main contribution after 4 days and resulted almost finished at the end of the day 7 of the process. Results showed that cellulose-based bio-plastics did not give a negative effect on mixed MSW biological stabilization and suggest a possible management, aiming at energy recovery of the outputs.
Effects of cellulose-based bio-plastics on the aerobic biological stabilization treatment of mixed municipal solid waste: A lab-scale assessment
Di Iaconi Claudio;Sorrentino AndreaUltimo
2022
Abstract
The aim of this work is to assess how the presence of cellulose-based bio-plastics influence the biological stabilization of mixed Municipal Solid Waste (MSW). For the scope, two cellulose acetate bio-plastics have been mixed with a synthetic mixed waste to create samples with and without bio-plastics. A self-induced biostabilization has been carried out for 7 and 14 days where temperature and off-gas have been monitored continuously. Results about temperature evolution, O-2 consumption, CO2 production and respiratory quotient did not show a substantial difference regarding both the duration of the process and the presence of cellulose-based bio-plastics on the mixture. On the average, the temperature peak and the maximum daily O-2 consumption and CO2 production were 52.2 degrees C, 35.81 g O-2/kg DM *d and 48.95 g CO2/kg DM *d respectively. Disintegration of bio-plastics samples after 7 and 14 days were comparable (on the average 23.13%). The self-induced biostabilization gave its main contribution after 4 days and resulted almost finished at the end of the day 7 of the process. Results showed that cellulose-based bio-plastics did not give a negative effect on mixed MSW biological stabilization and suggest a possible management, aiming at energy recovery of the outputs.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_481799-doc_198166.pdf
solo utenti autorizzati
Descrizione: Effects of cellulose-based bio-plastics on the aerobic biological stabilization
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.12 MB
Formato
Adobe PDF
|
3.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


