OBJECTIVES: The purpose of this study was to measure the contraction stress development of three flowable resin-composite materials (Grandio Flow, VOCO GmbH, Cuxhaven, Germany; Tetric Flow, Ivoclar Vivadent, Schaan, Liechtenstein; Filtek Supreme XT Flowable Restorative, 3M ESPE, ST. Paul, MN, USA) and an universal micro-hybrid composite resin (Filtek Z250, 3M ESPE, St. Paul, MN, USA) during photopolymerization with a halogen curing light, using a novel stress-measuring gauge. METHODS: Curing shrinkage stress was measured using a stress-analyzer. Composites were polymerized with a halogen curing unit (VIP, Bisco Inc., Schaumburg, IL, USA) for 40s. The contraction force (N) generated during polymerization was continuously recorded for 180s after photo-initiation. Contraction stress (MPa) was calculated at 20s, 40s, 60s, 120s and 180s. Data were statistically analyzed. RESULTS: Filtek Supreme XT Flowable Restorative exhibited the highest stress values compared to other materials (p<0.05), while the lowest values were recorded with Tetric Flow (p<0.05). Tetric Flow was also the only flowable composite showing stress values lower than the conventional composite Filtek Z250 (p<0.05). SIGNIFICANCE: Flowable composites investigated with this experimental setup showed shrinkage stress comparable to conventional resin restorative materials, thus supporting the hypothesis that the use of flowable materials do not lead to marked stress reduction and the risk of debonding at the adhesive interface as a result of polymerization contraction is similar for both type of materials

Flowability of composites is no guarantee for contraction stress reduction.

Breschi L
2009

Abstract

OBJECTIVES: The purpose of this study was to measure the contraction stress development of three flowable resin-composite materials (Grandio Flow, VOCO GmbH, Cuxhaven, Germany; Tetric Flow, Ivoclar Vivadent, Schaan, Liechtenstein; Filtek Supreme XT Flowable Restorative, 3M ESPE, ST. Paul, MN, USA) and an universal micro-hybrid composite resin (Filtek Z250, 3M ESPE, St. Paul, MN, USA) during photopolymerization with a halogen curing light, using a novel stress-measuring gauge. METHODS: Curing shrinkage stress was measured using a stress-analyzer. Composites were polymerized with a halogen curing unit (VIP, Bisco Inc., Schaumburg, IL, USA) for 40s. The contraction force (N) generated during polymerization was continuously recorded for 180s after photo-initiation. Contraction stress (MPa) was calculated at 20s, 40s, 60s, 120s and 180s. Data were statistically analyzed. RESULTS: Filtek Supreme XT Flowable Restorative exhibited the highest stress values compared to other materials (p<0.05), while the lowest values were recorded with Tetric Flow (p<0.05). Tetric Flow was also the only flowable composite showing stress values lower than the conventional composite Filtek Z250 (p<0.05). SIGNIFICANCE: Flowable composites investigated with this experimental setup showed shrinkage stress comparable to conventional resin restorative materials, thus supporting the hypothesis that the use of flowable materials do not lead to marked stress reduction and the risk of debonding at the adhesive interface as a result of polymerization contraction is similar for both type of materials
2009
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
Flowable
Resin-composite
Stress
Contraction
Polymerization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/43406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact