In this study, two strains of the mitochondrial lineage Q1 of Bemisia tabaci MED species, characterized by a different complement of facultative bacterial endosymbionts, were tested for their susceptibility to be attacked by the parasitoid wasp Eretmocerus mundus, a widespread natural enemy of B. tabaci. Notably, the BtHC strain infected with Hamiltonella and Cardinium was more resistant to parasitization than the BtHR strain infected with Hamiltonella and Rickettsia. The resistant phenotype consisted of fewer nymphs successfully parasitized (containing the parasitoid mature larva or pupa) and in a lower percentage of adult wasps emerging from parasitized nymphs. Interestingly, the resistance traits were not evident when E. mundus parasitism was compared between BtHC and BtHR using parasitoids originating from a colony maintained on BtHC. However, when we moved the parasitoid colony on BtHR and tested E. mundus after it was reared on BtHR for four and seven generations, we saw then that BtHC was less susceptible to parasitization than BtHR. On the other hand, we did not detect any difference in the parasitization of the BtHR strain between the three generations of E. mundus tested. Our findings showed that host strain is a factor affecting the ability of E. mundus to parasitize B. tabaci and lay the basis for further studies aimed at disentangling the role of the facultative endosymbiont Cardinium and of the genetic background in the resistance of B. tabaci MED to parasitoid attack. Furthermore, they highlight that counteradaptations to the variation of B. tabaci defence mechanisms may be rapidly selected in E. mundus to maximize the parasitoid fitness.

The Susceptibility of Bemisia tabaci Mediterranean (MED) Species to Attack by a Parasitoid Wasp Changes between Two Whitefly Strains with Different Facultative Endosymbiotic Bacteria

Giorgini M;Formisano G;
2023

Abstract

In this study, two strains of the mitochondrial lineage Q1 of Bemisia tabaci MED species, characterized by a different complement of facultative bacterial endosymbionts, were tested for their susceptibility to be attacked by the parasitoid wasp Eretmocerus mundus, a widespread natural enemy of B. tabaci. Notably, the BtHC strain infected with Hamiltonella and Cardinium was more resistant to parasitization than the BtHR strain infected with Hamiltonella and Rickettsia. The resistant phenotype consisted of fewer nymphs successfully parasitized (containing the parasitoid mature larva or pupa) and in a lower percentage of adult wasps emerging from parasitized nymphs. Interestingly, the resistance traits were not evident when E. mundus parasitism was compared between BtHC and BtHR using parasitoids originating from a colony maintained on BtHC. However, when we moved the parasitoid colony on BtHR and tested E. mundus after it was reared on BtHR for four and seven generations, we saw then that BtHC was less susceptible to parasitization than BtHR. On the other hand, we did not detect any difference in the parasitization of the BtHR strain between the three generations of E. mundus tested. Our findings showed that host strain is a factor affecting the ability of E. mundus to parasitize B. tabaci and lay the basis for further studies aimed at disentangling the role of the facultative endosymbiont Cardinium and of the genetic background in the resistance of B. tabaci MED to parasitoid attack. Furthermore, they highlight that counteradaptations to the variation of B. tabaci defence mechanisms may be rapidly selected in E. mundus to maximize the parasitoid fitness.
2023
Istituto per la Protezione Sostenibile delle Piante - IPSP
biological control; Cardinium; coevolution; host resistance; parasitism; parasitoid virulence; protective bacterial endosymbionts; Eretmocerus mundus; whiteflies
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/434077
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact