Recently, the number of attacks aiming at breaching networked and softwarized environments has been growing exponentially. In particular, information hiding methods and covert attacks have been proven to be able to elude traditional detection systems and exfiltrate sensitive data without producing visible network flows or data exchanges. In this context, Artificial Intelligence techniques can play a key role in detecting these new emerging attacks, owing to their capability of quickly processing huge amounts of data without the necessity of expert intervention. In this work, we discuss the main challenges to face covert attacks in IoT and softwarized environments and we describe some preliminary results obtained by adopting Deep Learning architectures.

Using AI to face covert attacks in IoT and softwarized scenarios: challenges and opportunities

Angelica Liguori;Marco Zuppelli;Carmela Comito;Enrico Cambiaso;Matteo Repetto;Massimo Guarascio;Luca Caviglione;Giuseppe Manco
2023

Abstract

Recently, the number of attacks aiming at breaching networked and softwarized environments has been growing exponentially. In particular, information hiding methods and covert attacks have been proven to be able to elude traditional detection systems and exfiltrate sensitive data without producing visible network flows or data exchanges. In this context, Artificial Intelligence techniques can play a key role in detecting these new emerging attacks, owing to their capability of quickly processing huge amounts of data without the necessity of expert intervention. In this work, we discuss the main challenges to face covert attacks in IoT and softwarized environments and we describe some preliminary results obtained by adopting Deep Learning architectures.
2023
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Stealthy Malware
stegomalware
container security
covert channels
evolving threats
AI
cybersecurity
security
File in questo prodotto:
File Dimensione Formato  
prod_480408-doc_197323.pdf

solo utenti autorizzati

Descrizione: Using AI to face covert attacks in IoT and softwarized scenarios: challenges and opportunities
Tipologia: Documento in Post-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 268.81 kB
Formato Adobe PDF
268.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_480408-doc_201926.pdf

solo utenti autorizzati

Descrizione: Using AI to face covert attacks in IoT and softwarized scenarios: challenges and opportunities
Tipologia: Documento in Post-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 395.58 kB
Formato Adobe PDF
395.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/434723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact