In free-form architecture, computational design tools have made it easy to create geometric models. However, obtaining good structural performance is difficult and requires further steps, such as shape optimization, to enhance system efficiency and material savings. This paper provides a user interface for form-finding and shape optimization of triangular grid shells. Users can minimize structural compliance, while ensuring small changes in their original design. A graph neural network learns to update the nodal coordinates of the grid shell to reduce a loss function based on strain energy. The interface can manage complex shapes and irregular tessellations. A variety of examples prove the effectiveness of the tool.

A geometry-preserving shape optimization tool based on deep learning

Favilli A;Laccone F;Cignoni P;Malomo L;Giorgi D
2023

Abstract

In free-form architecture, computational design tools have made it easy to create geometric models. However, obtaining good structural performance is difficult and requires further steps, such as shape optimization, to enhance system efficiency and material savings. This paper provides a user interface for form-finding and shape optimization of triangular grid shells. Users can minimize structural compliance, while ensuring small changes in their original design. A graph neural network learns to update the nodal coordinates of the grid shell to reduce a loss function based on strain energy. The interface can manage complex shapes and irregular tessellations. A variety of examples prove the effectiveness of the tool.
2023
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-031-44328-2
Design tool
Shape optimization
Graphical User Interface
Geometric learning
File in questo prodotto:
File Dimensione Formato  
prod_488041-doc_202924.pdf

accesso aperto

Descrizione: A Geometry-Preserving Shape Optimization Tool Based on Deep Learning
Tipologia: Documento in Pre-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 7.21 MB
Formato Adobe PDF
7.21 MB Adobe PDF Visualizza/Apri
978-3-031-44328-2_57.pdf

solo utenti autorizzati

Descrizione: A Geometry-Preserving Shape Optimization Tool Based on Deep Learning
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.88 MB
Formato Adobe PDF
3.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/434783
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact