QoS-aware service composition is challenging due to a high number of QoS attributes, component services, and candidate services. Realistic service composition applications operate in uncertain environments where QoS values may change dynamically. Moreover, user requirements on QoS attributes should be considered, and their different nature can make it difficult to express them by adopting relative weights. Reinforcement Learning is proposed as a viable approach in order to deal with the complexity and variability of the environment. In this paper, we propose a novel approach that integrates traditional reinforcement learning with a norm-based paradigm to consider cases where component services may have a different number and types of QoS attributes. In such a way, it is possible to consider additional local requirements that may hold only for specific service components still pursuing a global optimization. Norms allow using a uniform formalism to express qualitative and quantitative as well as hard and soft user requirements. The approach has been tested on a real dataset of 2500 web services showing its performance, scalability, and adaptability properties.

Norm-based reinforcement learning for QoS-driven service composition

Patrizia Ribino;Claudia Di Napoli;Luca Serino
2023

Abstract

QoS-aware service composition is challenging due to a high number of QoS attributes, component services, and candidate services. Realistic service composition applications operate in uncertain environments where QoS values may change dynamically. Moreover, user requirements on QoS attributes should be considered, and their different nature can make it difficult to express them by adopting relative weights. Reinforcement Learning is proposed as a viable approach in order to deal with the complexity and variability of the environment. In this paper, we propose a novel approach that integrates traditional reinforcement learning with a norm-based paradigm to consider cases where component services may have a different number and types of QoS attributes. In such a way, it is possible to consider additional local requirements that may hold only for specific service components still pursuing a global optimization. Norms allow using a uniform formalism to express qualitative and quantitative as well as hard and soft user requirements. The approach has been tested on a real dataset of 2500 web services showing its performance, scalability, and adaptability properties.
2023
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Service composition
Quality of service
Normative reasoning
Reinforcement learning
File in questo prodotto:
File Dimensione Formato  
prod_488544-doc_203247.pdf

solo utenti autorizzati

Descrizione: Norm-based reinforcement learning for QoS-driven service composition
Tipologia: Versione Editoriale (PDF)
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/434846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact