The development of efficient and cost-effective micromachines is a challenge for applied and fundamental science, given their wide fields of usage. Light is a suitable tool to move small objects in a noncontact way, given its capabilities in exerting forces and torques. However, when complex manipulation is required, micro-objects with proper architecture could play a specific role. Here we report on the rotational dynamics of core-shell particles, with a polymeric nematic core of ellipsoidal shape capped by Au nanoparticles. They undergo a peculiar synchronous spinning and orbital motion when irradiated by a simple Gaussian beam, which originates from the coupling of the metallic nanoparticles' optical response and the core anisotropies. The rotation capabilities are strongly enhanced when the trapping wavelength lies in the plasmonic resonance region: indeed, the spin kinetic energy reaches values two orders of magnitude larger than the one of bare microparticles. The proposed strategy brings important insights into optimizing the design of light controlled micro-objects and might benefit applications in microfluidics, microrheology, and micromachining involving rotational dynamics.

Plasmon-enhanced rotational dynamics of anisotropic core-shell polymeric-metallic microparticles

Mazzulla A;Pagliusi P;
2022

Abstract

The development of efficient and cost-effective micromachines is a challenge for applied and fundamental science, given their wide fields of usage. Light is a suitable tool to move small objects in a noncontact way, given its capabilities in exerting forces and torques. However, when complex manipulation is required, micro-objects with proper architecture could play a specific role. Here we report on the rotational dynamics of core-shell particles, with a polymeric nematic core of ellipsoidal shape capped by Au nanoparticles. They undergo a peculiar synchronous spinning and orbital motion when irradiated by a simple Gaussian beam, which originates from the coupling of the metallic nanoparticles' optical response and the core anisotropies. The rotation capabilities are strongly enhanced when the trapping wavelength lies in the plasmonic resonance region: indeed, the spin kinetic energy reaches values two orders of magnitude larger than the one of bare microparticles. The proposed strategy brings important insights into optimizing the design of light controlled micro-objects and might benefit applications in microfluidics, microrheology, and micromachining involving rotational dynamics.
2022
Istituto di Nanotecnologia - NANOTEC
optical manipulation
plasmonic resonance
polymers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/434874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact