A dynamic discrete-time model of container flows in maritime terminals is proposed as a system of queues. Such queues are controlled via input variables that account for the use of the available resources given by the capacities of the handling machines used to move containers inside a terminal. Two feedback control strategies for the allocation of such resources are described. The first consists of a resource assignment that is proportional to the corresponding queue lengths; in the second, the assignment is obtained by the one-step-ahead optimization of a performance cost function according to a myopic approach. Simulation results are reported to compare such methodologies for the purpose of sensitivity and scenario analyses in the management of a maritime terminal.
Modeling and feedback control for resource allocation and performance analysis in container terminals
Cristiano Cervellera;Marta Cuneo;Mauro Gaggero;Giuseppe Soncin
2008
Abstract
A dynamic discrete-time model of container flows in maritime terminals is proposed as a system of queues. Such queues are controlled via input variables that account for the use of the available resources given by the capacities of the handling machines used to move containers inside a terminal. Two feedback control strategies for the allocation of such resources are described. The first consists of a resource assignment that is proportional to the corresponding queue lengths; in the second, the assignment is obtained by the one-step-ahead optimization of a performance cost function according to a myopic approach. Simulation results are reported to compare such methodologies for the purpose of sensitivity and scenario analyses in the management of a maritime terminal.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.