Elastomer-based porous structures realized by selective laser sintering (SLS) are emerging as a new class of attractive multifunctional materials. Herein, a thermoplastic polyurethane (TPU) powder for SLS was modified by 1 wt.% multi-walled carbon nanotube (MWCNTs) or a mixture of MWCNTs and graphene (GE) nanoparticles (70/30wt/wt) in order to investigate on both the synergistic effect provided by the two conductive nanostructured carbonaceous fillers and the correlation between formulation, morphology, and final properties of SLS printed porous structures. In detail, porous structures with a porosity ranging from 20% to 60% were designed using Diamond (D) and Gyroid (G) unit cells. Results showed that the carbonaceous fillers improve the thermal stability of the elastomeric matrix. Furthermore, the TPU/1 wt.% MWCNTs-GE-based porous structures exhibit excellent electrical conductivity and mechanical strength. In particular, all porous structures exhibit a robust negative piezoresistive behavior, as demonstrated from the gauge factor (GF) values that reach values of about -13 at 8% strain. Furthermore, the G20 porous structures (20% of porosity) exhibit microwave absorption coefficients ranging from 0.70 to 0.91 in the 12-18 GHz region and close to 1 at THz frequencies (300 GHz-1 THz). Results show that the simultaneous presence of MWCNTs and GE brings a significant enhancement of specific functional properties of the porous structures, which are proposed as potential actuators with relevant electro-magnetic interference (EMI) shielding properties.

On the Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets to Enhance the Functional Properties of SLS 3D-Printed Elastomeric Structures

Rollo Gennaro;Ronca Alfredo;Cerruti Pierfrancesco;Lavorgna Marino;Ambrosio Luigi
2020

Abstract

Elastomer-based porous structures realized by selective laser sintering (SLS) are emerging as a new class of attractive multifunctional materials. Herein, a thermoplastic polyurethane (TPU) powder for SLS was modified by 1 wt.% multi-walled carbon nanotube (MWCNTs) or a mixture of MWCNTs and graphene (GE) nanoparticles (70/30wt/wt) in order to investigate on both the synergistic effect provided by the two conductive nanostructured carbonaceous fillers and the correlation between formulation, morphology, and final properties of SLS printed porous structures. In detail, porous structures with a porosity ranging from 20% to 60% were designed using Diamond (D) and Gyroid (G) unit cells. Results showed that the carbonaceous fillers improve the thermal stability of the elastomeric matrix. Furthermore, the TPU/1 wt.% MWCNTs-GE-based porous structures exhibit excellent electrical conductivity and mechanical strength. In particular, all porous structures exhibit a robust negative piezoresistive behavior, as demonstrated from the gauge factor (GF) values that reach values of about -13 at 8% strain. Furthermore, the G20 porous structures (20% of porosity) exhibit microwave absorption coefficients ranging from 0.70 to 0.91 in the 12-18 GHz region and close to 1 at THz frequencies (300 GHz-1 THz). Results show that the simultaneous presence of MWCNTs and GE brings a significant enhancement of specific functional properties of the porous structures, which are proposed as potential actuators with relevant electro-magnetic interference (EMI) shielding properties.
2020
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
selective laser sintering
piezoresistivity
thermoplastic polyurethane (TPU)
carbonaceous filler
EMI shielding
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/435434
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact