We present a low-temperature scanning tunneling microscopy study of the alpha-Sn/Si(111) surface that demonstrates the fluctuating behavior of the Sn adatoms. The dynamical fluctuation model, successfully applied in describing the alpha-Sn/Ge(111) surface, is proposed for the related alpha-Sn/Si(111) surface too, although with a much lower transition temperature. In addition, a new phenomenon appears responsible for the unexpected evidence that the average oscillation frequency remains constant at temperatures lower than 15 K, in contradiction to the Arrhenius law. We explain this phenomenon as quantum tunneling of Sn adatoms.

Evidence of Sn Adatoms Quantum Tunneling at the Sn/Si(111) Surface

Ronci F;Colonna S;Cricenti A;
2007

Abstract

We present a low-temperature scanning tunneling microscopy study of the alpha-Sn/Si(111) surface that demonstrates the fluctuating behavior of the Sn adatoms. The dynamical fluctuation model, successfully applied in describing the alpha-Sn/Ge(111) surface, is proposed for the related alpha-Sn/Si(111) surface too, although with a much lower transition temperature. In addition, a new phenomenon appears responsible for the unexpected evidence that the average oscillation frequency remains constant at temperatures lower than 15 K, in contradiction to the Arrhenius law. We explain this phenomenon as quantum tunneling of Sn adatoms.
2007
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/435925
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact