Hand grasp patterns are the results of complex kinematic-muscular coordination and synergistic control might help reducing the dimensionality of the motor control space at the hand level. Kinematic-muscular synergies combining muscle and kinematic hand grasp data have not been investigated before. This paper provides a novel analysis of kinematic-muscular synergies from kinematic and EMG data of 28 subjects, performing 20 hand grasps. Kinematic-muscular synergies were extracted from combined kinematic and muscle data with the recently introduced Mixed Matrix Factorization (MMF) algorithm. Seven synergies were first extracted from each subject, accounting on average for >75 % of the data variation. Then, cluster analysis was used to group synergies across subjects, with the aim of summarizing the coordination patterns available for hand grasps, and investigating relevant aspects of synergies such as inter-individual variability. Twenty-one clusters were needed to group the entire set of synergies extracted from 28 subjects, revealing high inter-individual variability. The number of kinematic-muscular motor modules required to perform the motor tasks is a reduced subset of the degrees of freedom to be coordinated; however, probably due to the variety of tasks, poor constraints and the large number of variables considered, we noted poor inter-individual repeatability. The results generalize the description of muscle and hand kinematics, better clarifying several limits of the field and fostering the development of applications in rehabilitation and assistive robotics.

Functional Synergies Applied to a Publicly Available Dataset of Hand Grasps Show Evidence of Kinematic-Muscular Synergistic Control

Scano Alessandro
Primo
;
Brambilla Cristina;
2023

Abstract

Hand grasp patterns are the results of complex kinematic-muscular coordination and synergistic control might help reducing the dimensionality of the motor control space at the hand level. Kinematic-muscular synergies combining muscle and kinematic hand grasp data have not been investigated before. This paper provides a novel analysis of kinematic-muscular synergies from kinematic and EMG data of 28 subjects, performing 20 hand grasps. Kinematic-muscular synergies were extracted from combined kinematic and muscle data with the recently introduced Mixed Matrix Factorization (MMF) algorithm. Seven synergies were first extracted from each subject, accounting on average for >75 % of the data variation. Then, cluster analysis was used to group synergies across subjects, with the aim of summarizing the coordination patterns available for hand grasps, and investigating relevant aspects of synergies such as inter-individual variability. Twenty-one clusters were needed to group the entire set of synergies extracted from 28 subjects, revealing high inter-individual variability. The number of kinematic-muscular motor modules required to perform the motor tasks is a reduced subset of the degrees of freedom to be coordinated; however, probably due to the variety of tasks, poor constraints and the large number of variables considered, we noted poor inter-individual repeatability. The results generalize the description of muscle and hand kinematics, better clarifying several limits of the field and fostering the development of applications in rehabilitation and assistive robotics.
2023
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Cluster analysis
cyberglove
hand synergies
kinematic-muscular synergies
kinematics
matrix factorization
myoelectric prostheses
rehabilitation
File in questo prodotto:
File Dimensione Formato  
2023_Scano_FunctionalSynergiesHandGrasps_IEEEAccess.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.98 MB
Formato Adobe PDF
4.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/436489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact