The objective of the Fourth Technical Meeting on Fusion Data Processing, Validation and Analysis was to provide a platform during which a set of topics relevant to fusion data processing, validation and analysis are discussed with the view of extrapolating needs to next step fusion devices such as ITER. The validation and analysis of experimental data obtained from diagnostics used to characterize fusion plasmas are crucial for a knowledge-based understanding of the physical processes governing the dynamics of these plasmas. This paper presents the recent progress and achievements in the domain of plasma diagnostics and synthetic diagnostics data analysis (including image processing, regression analysis, inverse problems, deep learning, machine learning, big data and physics-based models for control) reported at the meeting. The progress in these areas highlight trends observed in current major fusion confinement devices. A special focus is dedicated on data analysis requirements for ITER and DEMO with a particular attention paid to artificial intelligence for automatization and improving reliability of control processes.

Summary report of the 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis (FDPVA)

Murari A;
2023

Abstract

The objective of the Fourth Technical Meeting on Fusion Data Processing, Validation and Analysis was to provide a platform during which a set of topics relevant to fusion data processing, validation and analysis are discussed with the view of extrapolating needs to next step fusion devices such as ITER. The validation and analysis of experimental data obtained from diagnostics used to characterize fusion plasmas are crucial for a knowledge-based understanding of the physical processes governing the dynamics of these plasmas. This paper presents the recent progress and achievements in the domain of plasma diagnostics and synthetic diagnostics data analysis (including image processing, regression analysis, inverse problems, deep learning, machine learning, big data and physics-based models for control) reported at the meeting. The progress in these areas highlight trends observed in current major fusion confinement devices. A special focus is dedicated on data analysis requirements for ITER and DEMO with a particular attention paid to artificial intelligence for automatization and improving reliability of control processes.
2023
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
integrated data analysis
data validation
Bayesian techniques
neural networks
machine learning
disruption predictors
image processing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/437121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact