Surface modification of liposomes is an effective way to maintain the physicochemical activity of encapsulated substances. A novel astaxanthin (Ast)-based vesicle carrier system, namely, phosphatidyl-agar oligosaccharide (Ptd-AOS) liposomes (Lip), was prepared to improve the structural stability and in vitro digestibility of astaxanthin. During the transphosphatidylation reaction of synthesizing Ptd-AOS from phosphatidylcholine (PC) and AOS with different degrees of polymerization, phosphatidyl galactose (Ptd-Gal) and phosphatidyl neoagarobiose (Ptd-NA2) showed higher yields (85 and 96%, respectively). In terms of morphology, modified liposomes exhibited smaller particle sizes and more uniform dispersion compared with PC-Ast-Lip. In addition, the astaxanthin in the modified liposomes showed enhanced stability during liposome characterization and in vitro digestion. The transformations of astaxanthin in the modified liposomes were distributed in the range of 57-74% compared with free astaxanthin (25%). These findings suggest that the modification of liposomes by Ptd-AOS has potential applications in the delivery of functional ingredients.
Preparation and characterization of phosphatidyl-agar oligosaccharide liposomes for ataxanthin encapsulation
Francesco Secundo;
2023
Abstract
Surface modification of liposomes is an effective way to maintain the physicochemical activity of encapsulated substances. A novel astaxanthin (Ast)-based vesicle carrier system, namely, phosphatidyl-agar oligosaccharide (Ptd-AOS) liposomes (Lip), was prepared to improve the structural stability and in vitro digestibility of astaxanthin. During the transphosphatidylation reaction of synthesizing Ptd-AOS from phosphatidylcholine (PC) and AOS with different degrees of polymerization, phosphatidyl galactose (Ptd-Gal) and phosphatidyl neoagarobiose (Ptd-NA2) showed higher yields (85 and 96%, respectively). In terms of morphology, modified liposomes exhibited smaller particle sizes and more uniform dispersion compared with PC-Ast-Lip. In addition, the astaxanthin in the modified liposomes showed enhanced stability during liposome characterization and in vitro digestion. The transformations of astaxanthin in the modified liposomes were distributed in the range of 57-74% compared with free astaxanthin (25%). These findings suggest that the modification of liposomes by Ptd-AOS has potential applications in the delivery of functional ingredients.| File | Dimensione | Formato | |
|---|---|---|---|
|
128) Liposomes_Astaxantin_1-s2.0-S0308814622025638-main.pdf
Open Access dal 15/03/2024
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri |
|
128_Liposomes and astraxantin_ OUC.pdf
solo utenti autorizzati
Descrizione: File pdf
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.31 MB
Formato
Adobe PDF
|
3.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


