This contribution outlines current research aimed at developing models for personalized type 2 diabetes mellitus (T2D) prevention in the framework of the European project PRAESIIDIUM (Physics Informed Machine Learn-ing-Based Prediction and Reversion of Impaired Fasting Glucose Management) aimed at building a digital twin for preventing T2D in patients at risk. Specifically, the modelling approaches include both a multiscale, hybrid computational model of the human metaflammatory (metabolic and inflammatory) status, and data-driven models of the risk of developing T2D able to generate personalized recommendations for mitigating the individ-ual risk. The prediction algorithm will draw on a rich set of information for training, derived from prior clinical data, the individual's family history, and prospective clinical trials including clinical variables, wearable sensors, and a tracking mobile app (for diet, physical activity, and lifestyle). The models developed within the project will be the basis for building a platform for healthcare professionals and patients to estimate and monitor the indi-vidual risk of T2D in real time, thus potentially supporting personalized prevention and patient engagement.

Towards a digital twin for personalized diabetes prevention: the PRAESIIDIUM project

Paglialonga A;Simeone D;De Paola PF;Carlevaro A;Mongelli M;Dabbene F;Castiglione F;Palumbo MC;Stolfi P;Tieri P
2023

Abstract

This contribution outlines current research aimed at developing models for personalized type 2 diabetes mellitus (T2D) prevention in the framework of the European project PRAESIIDIUM (Physics Informed Machine Learn-ing-Based Prediction and Reversion of Impaired Fasting Glucose Management) aimed at building a digital twin for preventing T2D in patients at risk. Specifically, the modelling approaches include both a multiscale, hybrid computational model of the human metaflammatory (metabolic and inflammatory) status, and data-driven models of the risk of developing T2D able to generate personalized recommendations for mitigating the individ-ual risk. The prediction algorithm will draw on a rich set of information for training, derived from prior clinical data, the individual's family history, and prospective clinical trials including clinical variables, wearable sensors, and a tracking mobile app (for diet, physical activity, and lifestyle). The models developed within the project will be the basis for building a platform for healthcare professionals and patients to estimate and monitor the indi-vidual risk of T2D in real time, thus potentially supporting personalized prevention and patient engagement.
2023
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
multiscale modeling
digital twins
diabetes
diabetes prevention
machine learning
physics informed machine learn
multiscale models
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/437299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact