Minor fault geometry and kinematics within relay ramps is strongly related to the stress field perturbations that can be produced when two major fault segments overlap and interact. Here we integrate classical fieldwork and interpretation of a virtual outcrop to investigate the geometry and kinematics of subsidiary faults within a relay ramp along the Tre Monti normal fault in the Central Apennines. Although the Tre Monti fault strikes parallel to the regional extension (NE-SW) it shows predominant dip-slip kinematics, suggesting a NW-SE oriented extension acting at sub-regional scale (1-10 km). Conversely, the slickenlines collected on the front segment of the relay ramp highlight right-lateral kinematics. The subsidiary faults in the relay ramp show a complex geometry (variable attitudes) and slickenlines describe multiple kinematics (left-lateral, dip-slip, right-lateral), independently of their orientation. Our fault slip analysis indicates that a local stress field retrieved from the kinematic inversion of the slickenlines collected on the front segment, and likely promoted by the interaction between the overlapping fault segments that bound the relay zone, can explain most of the geometry and kinematics of the subsidiary faults. Further complexity is added by the temporal interaction with both the regional and sub-regional stress fields.
Complex geometry and kinematics of subsidiary faults within a carbonate-hosted relay ramp
Smeraglia Luca;
2020
Abstract
Minor fault geometry and kinematics within relay ramps is strongly related to the stress field perturbations that can be produced when two major fault segments overlap and interact. Here we integrate classical fieldwork and interpretation of a virtual outcrop to investigate the geometry and kinematics of subsidiary faults within a relay ramp along the Tre Monti normal fault in the Central Apennines. Although the Tre Monti fault strikes parallel to the regional extension (NE-SW) it shows predominant dip-slip kinematics, suggesting a NW-SE oriented extension acting at sub-regional scale (1-10 km). Conversely, the slickenlines collected on the front segment of the relay ramp highlight right-lateral kinematics. The subsidiary faults in the relay ramp show a complex geometry (variable attitudes) and slickenlines describe multiple kinematics (left-lateral, dip-slip, right-lateral), independently of their orientation. Our fault slip analysis indicates that a local stress field retrieved from the kinematic inversion of the slickenlines collected on the front segment, and likely promoted by the interaction between the overlapping fault segments that bound the relay zone, can explain most of the geometry and kinematics of the subsidiary faults. Further complexity is added by the temporal interaction with both the regional and sub-regional stress fields.| File | Dimensione | Formato | |
|---|---|---|---|
|
Smeraglia_etL-al.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
8.19 MB
Formato
Adobe PDF
|
8.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Smeraglia_etL-al_post_print.pdf
accesso aperto
Descrizione: This is the Accepted version (post-print) of the manuscript: Marco Mercuri, Ken J.W. McCaffrey, Luca Smeraglia, Paolo Mazzanti, Cristiano Collettini, Eugenio Carminati, Complex geometry and kinematics of subsidiary faults within a carbonate-hosted relay ramp, Journal of Structural Geology, Volume 130, 2020, 103915, ISSN 0191-8141, https://doi.org/10.1016/j.jsg.2019.103915. (https://www.sciencedirect.com/science/article/pii/S019181411930269X)
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
5.64 MB
Formato
Adobe PDF
|
5.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


