Dipeptides, the prototype peptides, exist in both linear (l-) and cyclo (c-) structures. Since the first mass spectrometry experiments, it has been observed that some l-structures may turn into the cyclo ones, likely via a temperature-induced process. In this work, combining several different experimental techniques (mass spectrometry, infrared and Raman spectroscopy, and thermogravimetric analysis) with tight-binding and ab initio simulations, we provide evidence that, in the case of L -phenylalanyl- L -alanine, an irreversible cyclization mechanism, catalyzed by water and driven by temperature, occurs in the condensed phase. This process can be considered as a very efficient strategy to improve dipeptide stability by turning the comparatively fragile linear structure into the robust and more stable cyclic one. This mechanism may have played a role in prebiotic chemistry and can be further exploited in the preparation of nanomaterials and drugs.

Insights into the Thermally Activated Cyclization Mechanism in a Linear Phenylalanine-Alanine Dipeptide

Laura Carlini;Jacopo Chiarinelli;Giuseppe Mattioli;Mattea Carmen Castrovilli;Veronica Valentini;Adriana De Stefanis;Elvira Maria Bauer;Paola Bolognesi;Lorenzo Avaldi
2022

Abstract

Dipeptides, the prototype peptides, exist in both linear (l-) and cyclo (c-) structures. Since the first mass spectrometry experiments, it has been observed that some l-structures may turn into the cyclo ones, likely via a temperature-induced process. In this work, combining several different experimental techniques (mass spectrometry, infrared and Raman spectroscopy, and thermogravimetric analysis) with tight-binding and ab initio simulations, we provide evidence that, in the case of L -phenylalanyl- L -alanine, an irreversible cyclization mechanism, catalyzed by water and driven by temperature, occurs in the condensed phase. This process can be considered as a very efficient strategy to improve dipeptide stability by turning the comparatively fragile linear structure into the robust and more stable cyclic one. This mechanism may have played a role in prebiotic chemistry and can be further exploited in the preparation of nanomaterials and drugs.
2022
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
dipeptides
cyclization mechanism
infrared spectroscopy
raman spectroscopy
mass spectrometry
density functional theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/437401
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact