CsPbBrnanoclusters have been synthesized by several groups and mostly employed as single-source precursors for the synthesis of anisotropic perovskite nanostructures or perovskite-based heterostructures. Yet, a detailed characterization of such clusters is still lacking due to their high instability. In this work, we were able to stabilize CsPbBrnanoclusters by carefully selecting ad hoc ligands (benzoic acid together with oleylamine) to passivate their surface. The clusters have a narrow absorption peak at 400 nm, a band-edge emission peaked at 410 nm at room temperature, and their composition is identified as CsPbBr. Synchrotron X-ray pair distribution function measurements indicate that the clusters exhibit a disk-like shape with a thickness smaller than 2 nm and a diameter of 13 nm, and their crystal structure is a highly distorted orthorhombic CsPbBr. Based on small- and wide-angle X-ray scattering analyses, the clusters tend to form a two-dimensional (2D) hexagonal packing with a short-range order and a lamellar packing with a long-range order.
Stable CsPbBr3 Nanoclusters Feature a Disk-like Shape and a Distorted Orthorhombic Structure
Altamura Davide;Caliandro Rocco;Giannini Cinzia;
2022
Abstract
CsPbBrnanoclusters have been synthesized by several groups and mostly employed as single-source precursors for the synthesis of anisotropic perovskite nanostructures or perovskite-based heterostructures. Yet, a detailed characterization of such clusters is still lacking due to their high instability. In this work, we were able to stabilize CsPbBrnanoclusters by carefully selecting ad hoc ligands (benzoic acid together with oleylamine) to passivate their surface. The clusters have a narrow absorption peak at 400 nm, a band-edge emission peaked at 410 nm at room temperature, and their composition is identified as CsPbBr. Synchrotron X-ray pair distribution function measurements indicate that the clusters exhibit a disk-like shape with a thickness smaller than 2 nm and a diameter of 13 nm, and their crystal structure is a highly distorted orthorhombic CsPbBr. Based on small- and wide-angle X-ray scattering analyses, the clusters tend to form a two-dimensional (2D) hexagonal packing with a short-range order and a lamellar packing with a long-range order.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.