The recent gradual increase in the use of polarimetric radars prompts for possible improvements in the estimation of precipitation and the identification of the prevailing hydrometeor type. An analysis of different convection episodes (20 May 2003, 4 and 7 May 2004) is conducted in order to explore the attenuation effects at C band and their consequences on the rainfall field estimation using two polarimetric radars in the Po Valley, Italy, located about 90 km apart. A hydrometeor classification scheme, developed at the National Severe Storms Laboratory (NSSL), is used to detect the microphysical structure of the different cloud systems. The work is focused on the reconstruction of the 3-D organisation of the convective events, highlighting how the two radar systems "see" the storms from different points of view. Furthermore, the two distinct observations and the temperature field are used to correct the effect of attenuation.

Analysis of severe convective events from two operational dual polarisation doppler radars

V Levizzani;
2006

Abstract

The recent gradual increase in the use of polarimetric radars prompts for possible improvements in the estimation of precipitation and the identification of the prevailing hydrometeor type. An analysis of different convection episodes (20 May 2003, 4 and 7 May 2004) is conducted in order to explore the attenuation effects at C band and their consequences on the rainfall field estimation using two polarimetric radars in the Po Valley, Italy, located about 90 km apart. A hydrometeor classification scheme, developed at the National Severe Storms Laboratory (NSSL), is used to detect the microphysical structure of the different cloud systems. The work is focused on the reconstruction of the 3-D organisation of the convective events, highlighting how the two radar systems "see" the storms from different points of view. Furthermore, the two distinct observations and the temperature field are used to correct the effect of attenuation.
2006
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Dipartimento di Scienze del Sistema Terra e Tecnologie per l'Ambiente - DSSTTA
radar
cloud microphysics
nowcasting
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/43743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact